Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281735013> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4281735013 endingPage "775" @default.
- W4281735013 startingPage "757" @default.
- W4281735013 abstract "Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient Boosting (XGBoost) and CatBoost are also used to improve the prediction using Artificial Neural Networks (ANN). This research also focuses on data visualization to identify patterns, trends, and outliers in a massive data set. Python and Scikit-learns are used for ML. Tensor Flow and Keras, along with Python, are used for ANN model training. The DT and RF algorithms achieved the highest accuracy of 95% among the classifiers. Meanwhile, KNN obtained a second height accuracy of 93.33%. XGBoost had a gratified accuracy of 91.67%, SVM, CATBoost, and ANN had an accuracy of 90%, and LR had 88.33% accuracy." @default.
- W4281735013 created "2022-06-13" @default.
- W4281735013 creator A5012744194 @default.
- W4281735013 creator A5027892341 @default.
- W4281735013 creator A5028344189 @default.
- W4281735013 creator A5037234452 @default.
- W4281735013 creator A5064673249 @default.
- W4281735013 creator A5075080543 @default.
- W4281735013 date "2023-01-01" @default.
- W4281735013 modified "2023-09-27" @default.
- W4281735013 title "Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk" @default.
- W4281735013 cites W1964940342 @default.
- W4281735013 cites W2604808181 @default.
- W4281735013 cites W2794094338 @default.
- W4281735013 cites W2903099708 @default.
- W4281735013 cites W2950663303 @default.
- W4281735013 cites W2954507261 @default.
- W4281735013 cites W2982980439 @default.
- W4281735013 cites W3009734408 @default.
- W4281735013 cites W3012665221 @default.
- W4281735013 cites W3027312415 @default.
- W4281735013 cites W3039479751 @default.
- W4281735013 cites W3080774167 @default.
- W4281735013 cites W3083483148 @default.
- W4281735013 cites W3130886625 @default.
- W4281735013 cites W3156316671 @default.
- W4281735013 doi "https://doi.org/10.32604/csse.2023.021469" @default.
- W4281735013 hasPublicationYear "2023" @default.
- W4281735013 type Work @default.
- W4281735013 citedByCount "1" @default.
- W4281735013 countsByYear W42817350132022 @default.
- W4281735013 crossrefType "journal-article" @default.
- W4281735013 hasAuthorship W4281735013A5012744194 @default.
- W4281735013 hasAuthorship W4281735013A5027892341 @default.
- W4281735013 hasAuthorship W4281735013A5028344189 @default.
- W4281735013 hasAuthorship W4281735013A5037234452 @default.
- W4281735013 hasAuthorship W4281735013A5064673249 @default.
- W4281735013 hasAuthorship W4281735013A5075080543 @default.
- W4281735013 hasBestOaLocation W42817350131 @default.
- W4281735013 hasConcept C111919701 @default.
- W4281735013 hasConcept C11413529 @default.
- W4281735013 hasConcept C119857082 @default.
- W4281735013 hasConcept C12267149 @default.
- W4281735013 hasConcept C144024400 @default.
- W4281735013 hasConcept C149923435 @default.
- W4281735013 hasConcept C154945302 @default.
- W4281735013 hasConcept C169258074 @default.
- W4281735013 hasConcept C2908647359 @default.
- W4281735013 hasConcept C41008148 @default.
- W4281735013 hasConcept C46686674 @default.
- W4281735013 hasConcept C50644808 @default.
- W4281735013 hasConcept C519991488 @default.
- W4281735013 hasConcept C55439883 @default.
- W4281735013 hasConcept C70153297 @default.
- W4281735013 hasConcept C79337645 @default.
- W4281735013 hasConcept C84525736 @default.
- W4281735013 hasConceptScore W4281735013C111919701 @default.
- W4281735013 hasConceptScore W4281735013C11413529 @default.
- W4281735013 hasConceptScore W4281735013C119857082 @default.
- W4281735013 hasConceptScore W4281735013C12267149 @default.
- W4281735013 hasConceptScore W4281735013C144024400 @default.
- W4281735013 hasConceptScore W4281735013C149923435 @default.
- W4281735013 hasConceptScore W4281735013C154945302 @default.
- W4281735013 hasConceptScore W4281735013C169258074 @default.
- W4281735013 hasConceptScore W4281735013C2908647359 @default.
- W4281735013 hasConceptScore W4281735013C41008148 @default.
- W4281735013 hasConceptScore W4281735013C46686674 @default.
- W4281735013 hasConceptScore W4281735013C50644808 @default.
- W4281735013 hasConceptScore W4281735013C519991488 @default.
- W4281735013 hasConceptScore W4281735013C55439883 @default.
- W4281735013 hasConceptScore W4281735013C70153297 @default.
- W4281735013 hasConceptScore W4281735013C79337645 @default.
- W4281735013 hasConceptScore W4281735013C84525736 @default.
- W4281735013 hasIssue "1" @default.
- W4281735013 hasLocation W42817350131 @default.
- W4281735013 hasOpenAccess W4281735013 @default.
- W4281735013 hasPrimaryLocation W42817350131 @default.
- W4281735013 hasRelatedWork W3100297620 @default.
- W4281735013 hasRelatedWork W3126325819 @default.
- W4281735013 hasRelatedWork W3195168932 @default.
- W4281735013 hasRelatedWork W3201348321 @default.
- W4281735013 hasRelatedWork W4212956667 @default.
- W4281735013 hasRelatedWork W4281866327 @default.
- W4281735013 hasRelatedWork W4296081764 @default.
- W4281735013 hasRelatedWork W4308191010 @default.
- W4281735013 hasRelatedWork W4382701299 @default.
- W4281735013 hasRelatedWork W4385728794 @default.
- W4281735013 hasVolume "44" @default.
- W4281735013 isParatext "false" @default.
- W4281735013 isRetracted "false" @default.
- W4281735013 workType "article" @default.