Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281738148> ?p ?o ?g. }
- W4281738148 endingPage "1850" @default.
- W4281738148 startingPage "1850" @default.
- W4281738148 abstract "Hybrid energy storage systems for hybrid electric vehicles (HEVs) consisting of multiple complementary energy sources are becoming increasingly popular as they reduce the risk of running out of electricity and increase the overall lifetime of the battery. However, designing an efficient power split optimization algorithm for HEVs is a challenging task due to their complex structure. Thus, in this paper, we propose a model that jointly learns the optimal power split for a battery/ultracapacitor/fuel cell HEV. Concerning the mechanical system of the HEV, two propulsion machines with complementary operation characteristics are employed to achieve higher efficiency. Additionally, to train and evaluate the model, standard driving cycles and real driving cycles are employed as input to the mechanical system. Then, given the inputs, a temporal attention long short-term memory model predicts the next time step velocity, and through that velocity, the predicted load power and its corresponding optimal power split is computed by a soft actor–critic deep reinforcement learning model whose training phase is aided by shaped reward functions. In contrast to global optimization techniques, the local velocity and load power prediction without future knowledge of the driving cycle is a step toward real-time optimal energy management. The experimental results show that the proposed method is robust to different initial states of charge values, better allocates the power to the energy sources and thus better manages the state of charge of the battery and the ultracapacitor. Additionally, the use of two motors significantly increases the efficiency of the system, and the prediction step is shown to be a reliable way to plan the HESS power split in advance." @default.
- W4281738148 created "2022-06-13" @default.
- W4281738148 creator A5017628692 @default.
- W4281738148 creator A5040592322 @default.
- W4281738148 creator A5076806126 @default.
- W4281738148 creator A5079383851 @default.
- W4281738148 date "2022-06-10" @default.
- W4281738148 modified "2023-09-27" @default.
- W4281738148 title "Deep Reinforcement Learning-Based Real-Time Joint Optimal Power Split for Battery–Ultracapacitor–Fuel Cell Hybrid Electric Vehicles" @default.
- W4281738148 cites W1989299305 @default.
- W4281738148 cites W2022997841 @default.
- W4281738148 cites W2078781768 @default.
- W4281738148 cites W2246542705 @default.
- W4281738148 cites W2562465851 @default.
- W4281738148 cites W2591468107 @default.
- W4281738148 cites W2594018149 @default.
- W4281738148 cites W2732040278 @default.
- W4281738148 cites W2741842238 @default.
- W4281738148 cites W2808570449 @default.
- W4281738148 cites W2883625844 @default.
- W4281738148 cites W2921851254 @default.
- W4281738148 cites W2930939328 @default.
- W4281738148 cites W2943944035 @default.
- W4281738148 cites W2955254859 @default.
- W4281738148 cites W2957014459 @default.
- W4281738148 cites W2989891288 @default.
- W4281738148 cites W2995332173 @default.
- W4281738148 cites W3009102432 @default.
- W4281738148 cites W3023522591 @default.
- W4281738148 cites W3091138349 @default.
- W4281738148 cites W3092195113 @default.
- W4281738148 cites W3136124754 @default.
- W4281738148 cites W3206005796 @default.
- W4281738148 cites W3217550953 @default.
- W4281738148 cites W4210505448 @default.
- W4281738148 cites W4244264101 @default.
- W4281738148 doi "https://doi.org/10.3390/electronics11121850" @default.
- W4281738148 hasPublicationYear "2022" @default.
- W4281738148 type Work @default.
- W4281738148 citedByCount "2" @default.
- W4281738148 countsByYear W42817381482022 @default.
- W4281738148 countsByYear W42817381482023 @default.
- W4281738148 crossrefType "journal-article" @default.
- W4281738148 hasAuthorship W4281738148A5017628692 @default.
- W4281738148 hasAuthorship W4281738148A5040592322 @default.
- W4281738148 hasAuthorship W4281738148A5076806126 @default.
- W4281738148 hasAuthorship W4281738148A5079383851 @default.
- W4281738148 hasBestOaLocation W42817381481 @default.
- W4281738148 hasConcept C1034443 @default.
- W4281738148 hasConcept C105795698 @default.
- W4281738148 hasConcept C121332964 @default.
- W4281738148 hasConcept C127413603 @default.
- W4281738148 hasConcept C144171764 @default.
- W4281738148 hasConcept C146978453 @default.
- W4281738148 hasConcept C154945302 @default.
- W4281738148 hasConcept C163258240 @default.
- W4281738148 hasConcept C169042556 @default.
- W4281738148 hasConcept C171146098 @default.
- W4281738148 hasConcept C186370098 @default.
- W4281738148 hasConcept C2776422217 @default.
- W4281738148 hasConcept C2776582896 @default.
- W4281738148 hasConcept C33923547 @default.
- W4281738148 hasConcept C41008148 @default.
- W4281738148 hasConcept C44154836 @default.
- W4281738148 hasConcept C555008776 @default.
- W4281738148 hasConcept C62520636 @default.
- W4281738148 hasConcept C76047896 @default.
- W4281738148 hasConcept C7817414 @default.
- W4281738148 hasConcept C97355855 @default.
- W4281738148 hasConcept C97541855 @default.
- W4281738148 hasConceptScore W4281738148C1034443 @default.
- W4281738148 hasConceptScore W4281738148C105795698 @default.
- W4281738148 hasConceptScore W4281738148C121332964 @default.
- W4281738148 hasConceptScore W4281738148C127413603 @default.
- W4281738148 hasConceptScore W4281738148C144171764 @default.
- W4281738148 hasConceptScore W4281738148C146978453 @default.
- W4281738148 hasConceptScore W4281738148C154945302 @default.
- W4281738148 hasConceptScore W4281738148C163258240 @default.
- W4281738148 hasConceptScore W4281738148C169042556 @default.
- W4281738148 hasConceptScore W4281738148C171146098 @default.
- W4281738148 hasConceptScore W4281738148C186370098 @default.
- W4281738148 hasConceptScore W4281738148C2776422217 @default.
- W4281738148 hasConceptScore W4281738148C2776582896 @default.
- W4281738148 hasConceptScore W4281738148C33923547 @default.
- W4281738148 hasConceptScore W4281738148C41008148 @default.
- W4281738148 hasConceptScore W4281738148C44154836 @default.
- W4281738148 hasConceptScore W4281738148C555008776 @default.
- W4281738148 hasConceptScore W4281738148C62520636 @default.
- W4281738148 hasConceptScore W4281738148C76047896 @default.
- W4281738148 hasConceptScore W4281738148C7817414 @default.
- W4281738148 hasConceptScore W4281738148C97355855 @default.
- W4281738148 hasConceptScore W4281738148C97541855 @default.
- W4281738148 hasIssue "12" @default.
- W4281738148 hasLocation W42817381481 @default.
- W4281738148 hasLocation W42817381482 @default.
- W4281738148 hasOpenAccess W4281738148 @default.
- W4281738148 hasPrimaryLocation W42817381481 @default.
- W4281738148 hasRelatedWork W1978670141 @default.