Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281738360> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4281738360 endingPage "11" @default.
- W4281738360 startingPage "1" @default.
- W4281738360 abstract "Manual investigation is warranted in traditional approaches for estimating the bug severity level, which adds to the effort and time required. For bug severity report prediction, numerous automated strategies have been proposed in addition to manual ones. However, the current bug report predictors by facing several issues, such as overfitting and weight computation, and therefore, their efficiency for specific levels of data noise needs to improve. As a result, a bug report predictor is required to solve these concerns (e.g., overfitting and avoiding weight calculation, which increases computing complexity) and perform better in the situation of data noise. We use GPT-2’s features (limiting overfitting and supplying sequential predictors rather than weight computation) to develop a new approach for predicting the severity level of bug reports in this study. The proposed approach is divided into four stages. First, the bug reports are subjected to text preprocessing. Second, we assess each bug report’s emotional score. Third, each report is presented in vector format. Finally, an emotion score is assigned to each bug report, and a vector of each bug report is produced and sent to GPT-2. We employ statistical indicators like recall, precision, and F1-score to evaluate the suggested method’s effectiveness and efficacy. A comparison was also made using state-of-the-art bug report predictors such as Random Forest (RF), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) Network, Support Vector Machine (SVM), XGBoost, and Naive Bayes Multinomial (NBM). The proposed method’s promising result indicates its efficacy in bug information retrieval." @default.
- W4281738360 created "2022-06-13" @default.
- W4281738360 creator A5025407927 @default.
- W4281738360 creator A5026401762 @default.
- W4281738360 creator A5038757313 @default.
- W4281738360 creator A5040966539 @default.
- W4281738360 creator A5069623131 @default.
- W4281738360 creator A5081448676 @default.
- W4281738360 date "2022-05-29" @default.
- W4281738360 modified "2023-09-27" @default.
- W4281738360 title "An Automated Approach for the Prediction of the Severity Level of Bug Reports Using GPT-2" @default.
- W4281738360 cites W1877019069 @default.
- W4281738360 cites W1992009922 @default.
- W4281738360 cites W2005152325 @default.
- W4281738360 cites W2018871545 @default.
- W4281738360 cites W2037450062 @default.
- W4281738360 cites W2071571931 @default.
- W4281738360 cites W2159872370 @default.
- W4281738360 cites W2295703381 @default.
- W4281738360 cites W2490580177 @default.
- W4281738360 cites W2746941029 @default.
- W4281738360 cites W2801954939 @default.
- W4281738360 cites W2809895060 @default.
- W4281738360 cites W2909301843 @default.
- W4281738360 cites W2943578967 @default.
- W4281738360 cites W2944509687 @default.
- W4281738360 cites W2955571669 @default.
- W4281738360 cites W2966195514 @default.
- W4281738360 cites W2972407267 @default.
- W4281738360 cites W2982119098 @default.
- W4281738360 cites W2988217457 @default.
- W4281738360 cites W2988647680 @default.
- W4281738360 cites W3017357554 @default.
- W4281738360 cites W3099440025 @default.
- W4281738360 cites W3123400785 @default.
- W4281738360 cites W3194976401 @default.
- W4281738360 cites W4205671797 @default.
- W4281738360 doi "https://doi.org/10.1155/2022/2892401" @default.
- W4281738360 hasPublicationYear "2022" @default.
- W4281738360 type Work @default.
- W4281738360 citedByCount "1" @default.
- W4281738360 countsByYear W42817383602023 @default.
- W4281738360 crossrefType "journal-article" @default.
- W4281738360 hasAuthorship W4281738360A5025407927 @default.
- W4281738360 hasAuthorship W4281738360A5026401762 @default.
- W4281738360 hasAuthorship W4281738360A5038757313 @default.
- W4281738360 hasAuthorship W4281738360A5040966539 @default.
- W4281738360 hasAuthorship W4281738360A5069623131 @default.
- W4281738360 hasAuthorship W4281738360A5081448676 @default.
- W4281738360 hasBestOaLocation W42817383601 @default.
- W4281738360 hasConcept C115961682 @default.
- W4281738360 hasConcept C119857082 @default.
- W4281738360 hasConcept C12267149 @default.
- W4281738360 hasConcept C124101348 @default.
- W4281738360 hasConcept C148524875 @default.
- W4281738360 hasConcept C154945302 @default.
- W4281738360 hasConcept C169258074 @default.
- W4281738360 hasConcept C22019652 @default.
- W4281738360 hasConcept C2776145597 @default.
- W4281738360 hasConcept C34736171 @default.
- W4281738360 hasConcept C41008148 @default.
- W4281738360 hasConcept C50644808 @default.
- W4281738360 hasConcept C52001869 @default.
- W4281738360 hasConcept C81363708 @default.
- W4281738360 hasConcept C99498987 @default.
- W4281738360 hasConceptScore W4281738360C115961682 @default.
- W4281738360 hasConceptScore W4281738360C119857082 @default.
- W4281738360 hasConceptScore W4281738360C12267149 @default.
- W4281738360 hasConceptScore W4281738360C124101348 @default.
- W4281738360 hasConceptScore W4281738360C148524875 @default.
- W4281738360 hasConceptScore W4281738360C154945302 @default.
- W4281738360 hasConceptScore W4281738360C169258074 @default.
- W4281738360 hasConceptScore W4281738360C22019652 @default.
- W4281738360 hasConceptScore W4281738360C2776145597 @default.
- W4281738360 hasConceptScore W4281738360C34736171 @default.
- W4281738360 hasConceptScore W4281738360C41008148 @default.
- W4281738360 hasConceptScore W4281738360C50644808 @default.
- W4281738360 hasConceptScore W4281738360C52001869 @default.
- W4281738360 hasConceptScore W4281738360C81363708 @default.
- W4281738360 hasConceptScore W4281738360C99498987 @default.
- W4281738360 hasLocation W42817383601 @default.
- W4281738360 hasOpenAccess W4281738360 @default.
- W4281738360 hasPrimaryLocation W42817383601 @default.
- W4281738360 hasRelatedWork W2979979539 @default.
- W4281738360 hasRelatedWork W3106359073 @default.
- W4281738360 hasRelatedWork W3127425528 @default.
- W4281738360 hasRelatedWork W4205516226 @default.
- W4281738360 hasRelatedWork W4205958290 @default.
- W4281738360 hasRelatedWork W4308353688 @default.
- W4281738360 hasRelatedWork W4311106074 @default.
- W4281738360 hasRelatedWork W4316087365 @default.
- W4281738360 hasRelatedWork W4327520926 @default.
- W4281738360 hasRelatedWork W4360772992 @default.
- W4281738360 hasVolume "2022" @default.
- W4281738360 isParatext "false" @default.
- W4281738360 isRetracted "false" @default.
- W4281738360 workType "article" @default.