Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281740734> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4281740734 abstract "Today, the growth of the coronavirus as a pandemic and its global expansion is a significant concern in our society and the international community. However, in recent years, many individuals have shifted their major source of news and information to social networks. Consequently, the widespread dissemination of false and misleading information on social media is significant for most politicians. Our effort is not only against COVID-19 but against an “infodemic” as well. To address this, on COVID-19, we have collected and released a labeled dataset of 7,000 social media postings Persian data, and articles of authentic and false news. Covid 19 fake news has been detected in other languages such as Arabic, English, Chinese, and Hindi. We execute a multi-label task (actual vs. fictitious) on the labeled dataset and compare it to six machine learning baselines: Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, K-Nearest Neighbors, and Random Forest. On the test set, the support vector machine gives us the best results, with an 89 percent accuracy rate." @default.
- W4281740734 created "2022-06-13" @default.
- W4281740734 creator A5002478751 @default.
- W4281740734 creator A5047801721 @default.
- W4281740734 creator A5050967657 @default.
- W4281740734 creator A5066662159 @default.
- W4281740734 date "2022-05-11" @default.
- W4281740734 modified "2023-09-26" @default.
- W4281740734 title "Using Supervised Learning Models for Creating a New Fake News Analysis and Classification of a COVID-19 Dataset: A case study on Covid-19 in Iran" @default.
- W4281740734 cites W1974674099 @default.
- W4281740734 cites W2560103205 @default.
- W4281740734 cites W2964263306 @default.
- W4281740734 cites W3004582376 @default.
- W4281740734 cites W3036614995 @default.
- W4281740734 cites W3038131921 @default.
- W4281740734 cites W3044800712 @default.
- W4281740734 cites W3080590497 @default.
- W4281740734 cites W3097301690 @default.
- W4281740734 cites W3098835531 @default.
- W4281740734 cites W3127071205 @default.
- W4281740734 cites W3166352507 @default.
- W4281740734 cites W3167878879 @default.
- W4281740734 cites W3194294396 @default.
- W4281740734 cites W3197856886 @default.
- W4281740734 cites W4205767499 @default.
- W4281740734 cites W4214857053 @default.
- W4281740734 cites W4220717117 @default.
- W4281740734 cites W4249545506 @default.
- W4281740734 doi "https://doi.org/10.1109/icwr54782.2022.9786244" @default.
- W4281740734 hasPublicationYear "2022" @default.
- W4281740734 type Work @default.
- W4281740734 citedByCount "2" @default.
- W4281740734 countsByYear W42817407342023 @default.
- W4281740734 crossrefType "proceedings-article" @default.
- W4281740734 hasAuthorship W4281740734A5002478751 @default.
- W4281740734 hasAuthorship W4281740734A5047801721 @default.
- W4281740734 hasAuthorship W4281740734A5050967657 @default.
- W4281740734 hasAuthorship W4281740734A5066662159 @default.
- W4281740734 hasConcept C119857082 @default.
- W4281740734 hasConcept C12267149 @default.
- W4281740734 hasConcept C136764020 @default.
- W4281740734 hasConcept C142724271 @default.
- W4281740734 hasConcept C151956035 @default.
- W4281740734 hasConcept C154945302 @default.
- W4281740734 hasConcept C169258074 @default.
- W4281740734 hasConcept C169903167 @default.
- W4281740734 hasConcept C204321447 @default.
- W4281740734 hasConcept C2779134260 @default.
- W4281740734 hasConcept C3008058167 @default.
- W4281740734 hasConcept C41008148 @default.
- W4281740734 hasConcept C518677369 @default.
- W4281740734 hasConcept C52001869 @default.
- W4281740734 hasConcept C524204448 @default.
- W4281740734 hasConcept C66402592 @default.
- W4281740734 hasConcept C71924100 @default.
- W4281740734 hasConcept C84525736 @default.
- W4281740734 hasConceptScore W4281740734C119857082 @default.
- W4281740734 hasConceptScore W4281740734C12267149 @default.
- W4281740734 hasConceptScore W4281740734C136764020 @default.
- W4281740734 hasConceptScore W4281740734C142724271 @default.
- W4281740734 hasConceptScore W4281740734C151956035 @default.
- W4281740734 hasConceptScore W4281740734C154945302 @default.
- W4281740734 hasConceptScore W4281740734C169258074 @default.
- W4281740734 hasConceptScore W4281740734C169903167 @default.
- W4281740734 hasConceptScore W4281740734C204321447 @default.
- W4281740734 hasConceptScore W4281740734C2779134260 @default.
- W4281740734 hasConceptScore W4281740734C3008058167 @default.
- W4281740734 hasConceptScore W4281740734C41008148 @default.
- W4281740734 hasConceptScore W4281740734C518677369 @default.
- W4281740734 hasConceptScore W4281740734C52001869 @default.
- W4281740734 hasConceptScore W4281740734C524204448 @default.
- W4281740734 hasConceptScore W4281740734C66402592 @default.
- W4281740734 hasConceptScore W4281740734C71924100 @default.
- W4281740734 hasConceptScore W4281740734C84525736 @default.
- W4281740734 hasLocation W42817407341 @default.
- W4281740734 hasOpenAccess W4281740734 @default.
- W4281740734 hasPrimaryLocation W42817407341 @default.
- W4281740734 hasRelatedWork W3127425528 @default.
- W4281740734 hasRelatedWork W3143658565 @default.
- W4281740734 hasRelatedWork W3204641204 @default.
- W4281740734 hasRelatedWork W4246246790 @default.
- W4281740734 hasRelatedWork W4280583453 @default.
- W4281740734 hasRelatedWork W4281846282 @default.
- W4281740734 hasRelatedWork W4312707991 @default.
- W4281740734 hasRelatedWork W4321636153 @default.
- W4281740734 hasRelatedWork W4376059206 @default.
- W4281740734 hasRelatedWork W4377964522 @default.
- W4281740734 isParatext "false" @default.
- W4281740734 isRetracted "false" @default.
- W4281740734 workType "article" @default.