Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281740951> ?p ?o ?g. }
- W4281740951 endingPage "156613" @default.
- W4281740951 startingPage "156613" @default.
- W4281740951 abstract "Nutrient runoff from agricultural production is one of the main causes of water quality deterioration in river systems and coastal waters. Water quality modeling can be used for gaining insight into water quality issues in order to implement effective mitigation efforts. Process-based nutrient models are very complex, requiring a lot of input parameters and computationally expensive calibration. Recently, ML approaches have shown to achieve an accuracy comparable to the process-based models and even outperform them when describing nonlinear relationships. We used observations from 242 Estonian catchments, amounting to 469 yearly TN and 470 TP measurements covering the period 2016-2020 to train random forest (RF) models for predicting annual N and P concentrations. We used a total of 82 predictor variables, including land cover, soil, climate and topography parameters and applied a feature selection strategy to reduce the number of dependent features in the models. The SHAP method was used for deriving the most relevant predictors. The performance of our models is comparable to previous process-based models used in the Baltic region with the TN and TP model having an R2 score of 0.83 and 0.52, respectively. However, as input data used in our models is easier to obtain, the models offer superior applicability in areas, where data availability is insufficient for process-based approaches. Therefore, the models enable to give a robust estimation for nutrient losses at national level and allows to capture the spatial variability of the nutrient runoff which in turn enables to provide decision-making support for regional water management plans." @default.
- W4281740951 created "2022-06-13" @default.
- W4281740951 creator A5011963247 @default.
- W4281740951 creator A5048819296 @default.
- W4281740951 creator A5048946001 @default.
- W4281740951 creator A5062585456 @default.
- W4281740951 date "2022-09-01" @default.
- W4281740951 modified "2023-10-01" @default.
- W4281740951 title "Random forest-based modeling of stream nutrients at national level in a data-scarce region" @default.
- W4281740951 cites W1875061881 @default.
- W4281740951 cites W1895993419 @default.
- W4281740951 cites W1897026787 @default.
- W4281740951 cites W1970887579 @default.
- W4281740951 cites W1982627164 @default.
- W4281740951 cites W1983724666 @default.
- W4281740951 cites W1986008082 @default.
- W4281740951 cites W1989767924 @default.
- W4281740951 cites W1991129892 @default.
- W4281740951 cites W1998579012 @default.
- W4281740951 cites W2001151049 @default.
- W4281740951 cites W2013235679 @default.
- W4281740951 cites W2014640153 @default.
- W4281740951 cites W2016023958 @default.
- W4281740951 cites W2017978747 @default.
- W4281740951 cites W2019529923 @default.
- W4281740951 cites W2023102110 @default.
- W4281740951 cites W2027232134 @default.
- W4281740951 cites W2028256946 @default.
- W4281740951 cites W2047734712 @default.
- W4281740951 cites W2051892887 @default.
- W4281740951 cites W2057197369 @default.
- W4281740951 cites W2068134360 @default.
- W4281740951 cites W2076181917 @default.
- W4281740951 cites W2082413120 @default.
- W4281740951 cites W2082800563 @default.
- W4281740951 cites W2101664201 @default.
- W4281740951 cites W2122463349 @default.
- W4281740951 cites W2126902408 @default.
- W4281740951 cites W2153820558 @default.
- W4281740951 cites W2154911560 @default.
- W4281740951 cites W2160495386 @default.
- W4281740951 cites W2161548576 @default.
- W4281740951 cites W2161891713 @default.
- W4281740951 cites W2167101736 @default.
- W4281740951 cites W2169744906 @default.
- W4281740951 cites W2177046064 @default.
- W4281740951 cites W2210378132 @default.
- W4281740951 cites W2511822793 @default.
- W4281740951 cites W2544886233 @default.
- W4281740951 cites W2572622164 @default.
- W4281740951 cites W2588003345 @default.
- W4281740951 cites W2658592595 @default.
- W4281740951 cites W2772153437 @default.
- W4281740951 cites W2786629623 @default.
- W4281740951 cites W2788076750 @default.
- W4281740951 cites W2789760283 @default.
- W4281740951 cites W2801129493 @default.
- W4281740951 cites W2801753748 @default.
- W4281740951 cites W2889192391 @default.
- W4281740951 cites W2899684203 @default.
- W4281740951 cites W2911964244 @default.
- W4281740951 cites W2915138036 @default.
- W4281740951 cites W2921176894 @default.
- W4281740951 cites W2939650464 @default.
- W4281740951 cites W2944550430 @default.
- W4281740951 cites W2948723536 @default.
- W4281740951 cites W2954914714 @default.
- W4281740951 cites W2961574599 @default.
- W4281740951 cites W2973392964 @default.
- W4281740951 cites W2982097326 @default.
- W4281740951 cites W2989831060 @default.
- W4281740951 cites W2989857225 @default.
- W4281740951 cites W2998681661 @default.
- W4281740951 cites W2999615587 @default.
- W4281740951 cites W3005408137 @default.
- W4281740951 cites W3005422321 @default.
- W4281740951 cites W3006671182 @default.
- W4281740951 cites W3008573318 @default.
- W4281740951 cites W3009964072 @default.
- W4281740951 cites W3017234705 @default.
- W4281740951 cites W3020832107 @default.
- W4281740951 cites W3026997612 @default.
- W4281740951 cites W3029081536 @default.
- W4281740951 cites W3032685738 @default.
- W4281740951 cites W3033661296 @default.
- W4281740951 cites W3037645259 @default.
- W4281740951 cites W3037839509 @default.
- W4281740951 cites W3088222451 @default.
- W4281740951 cites W3092026988 @default.
- W4281740951 cites W3093733298 @default.
- W4281740951 cites W3099802519 @default.
- W4281740951 cites W3110286412 @default.
- W4281740951 cites W3112905420 @default.
- W4281740951 cites W3117975874 @default.
- W4281740951 cites W3120074694 @default.
- W4281740951 cites W3124054725 @default.
- W4281740951 cites W3130973092 @default.
- W4281740951 cites W3137154090 @default.