Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281741249> ?p ?o ?g. }
- W4281741249 endingPage "101827" @default.
- W4281741249 startingPage "101827" @default.
- W4281741249 abstract "Promoting urban vibrancy is one of the major objectives of urban planners and government officials, and it is linked to various benefits, such as urban prosperity and human well-being. There is ample evidence that built environment characteristics are associated with urban vibrancy; however, the spatiotemporal associations between built environment and urban vibrancy have not been fully investigated owing to the inherent limitations of traditional data. To address this gap, we measured spatiotemporal urban vibrancy in Shenzhen, China, using Tencent location-based big data, which is characterized by fine-grained population-level spatiotemporal granularity. Built environment characteristics were systematically measured using the 5D framework (density, diversity, design, destination accessibility, and distance to transit) with multi-source datasets. We investigated the spatiotemporal non-stationary associations using a geographically and temporally weighted regression (GTWR) model. The results indicated that the GTWR models achieved better goodness-of-fit than linear regression models. Built environment factors such as population density; point of interest (POI) mix; residential, commercial, company, and public service POI; and metro station were significantly associated with urban vibrancy. Time series clustering revealed spatiotemporal clustered patterns of the associations between built environment factors and urban vibrancy. To promote urban vibrancy with urban planning and design strategies, both the spatial and temporal associations between the built environment and urban vibrancy should be considered." @default.
- W4281741249 created "2022-06-13" @default.
- W4281741249 creator A5008598564 @default.
- W4281741249 creator A5043711460 @default.
- W4281741249 creator A5057288607 @default.
- W4281741249 creator A5080744605 @default.
- W4281741249 date "2022-07-01" @default.
- W4281741249 modified "2023-10-05" @default.
- W4281741249 title "Investigating the spatiotemporal pattern between the built environment and urban vibrancy using big data in Shenzhen, China" @default.
- W4281741249 cites W1829241487 @default.
- W4281741249 cites W1861505052 @default.
- W4281741249 cites W1971794754 @default.
- W4281741249 cites W1982280490 @default.
- W4281741249 cites W1987233492 @default.
- W4281741249 cites W1987264627 @default.
- W4281741249 cites W2000549183 @default.
- W4281741249 cites W2005544339 @default.
- W4281741249 cites W2016802582 @default.
- W4281741249 cites W2026554598 @default.
- W4281741249 cites W2037427175 @default.
- W4281741249 cites W2047120335 @default.
- W4281741249 cites W2083336903 @default.
- W4281741249 cites W2084298285 @default.
- W4281741249 cites W2136758155 @default.
- W4281741249 cites W2144512297 @default.
- W4281741249 cites W2158972667 @default.
- W4281741249 cites W2323455124 @default.
- W4281741249 cites W2517491419 @default.
- W4281741249 cites W2581341326 @default.
- W4281741249 cites W2757375999 @default.
- W4281741249 cites W2769920124 @default.
- W4281741249 cites W2791567758 @default.
- W4281741249 cites W2800559344 @default.
- W4281741249 cites W2808745938 @default.
- W4281741249 cites W2886905452 @default.
- W4281741249 cites W2889983716 @default.
- W4281741249 cites W2895605430 @default.
- W4281741249 cites W2951857602 @default.
- W4281741249 cites W2952090951 @default.
- W4281741249 cites W2953404437 @default.
- W4281741249 cites W2956114003 @default.
- W4281741249 cites W2963487624 @default.
- W4281741249 cites W2967211241 @default.
- W4281741249 cites W2979370769 @default.
- W4281741249 cites W2987354670 @default.
- W4281741249 cites W2990162095 @default.
- W4281741249 cites W3087432152 @default.
- W4281741249 cites W3102249753 @default.
- W4281741249 cites W3130400444 @default.
- W4281741249 cites W3134275235 @default.
- W4281741249 cites W3165831585 @default.
- W4281741249 cites W3173956688 @default.
- W4281741249 cites W3199737888 @default.
- W4281741249 cites W3201600975 @default.
- W4281741249 cites W3204460996 @default.
- W4281741249 cites W3212720777 @default.
- W4281741249 cites W3217616488 @default.
- W4281741249 cites W4206106218 @default.
- W4281741249 doi "https://doi.org/10.1016/j.compenvurbsys.2022.101827" @default.
- W4281741249 hasPublicationYear "2022" @default.
- W4281741249 type Work @default.
- W4281741249 citedByCount "15" @default.
- W4281741249 countsByYear W42817412492022 @default.
- W4281741249 countsByYear W42817412492023 @default.
- W4281741249 crossrefType "journal-article" @default.
- W4281741249 hasAuthorship W4281741249A5008598564 @default.
- W4281741249 hasAuthorship W4281741249A5043711460 @default.
- W4281741249 hasAuthorship W4281741249A5057288607 @default.
- W4281741249 hasAuthorship W4281741249A5080744605 @default.
- W4281741249 hasConcept C119857082 @default.
- W4281741249 hasConcept C124101348 @default.
- W4281741249 hasConcept C127413603 @default.
- W4281741249 hasConcept C144024400 @default.
- W4281741249 hasConcept C147176958 @default.
- W4281741249 hasConcept C148383697 @default.
- W4281741249 hasConcept C148803439 @default.
- W4281741249 hasConcept C149923435 @default.
- W4281741249 hasConcept C162324750 @default.
- W4281741249 hasConcept C166957645 @default.
- W4281741249 hasConcept C191935318 @default.
- W4281741249 hasConcept C205649164 @default.
- W4281741249 hasConcept C26271046 @default.
- W4281741249 hasConcept C2776554220 @default.
- W4281741249 hasConcept C2779276850 @default.
- W4281741249 hasConcept C2780132705 @default.
- W4281741249 hasConcept C2908647359 @default.
- W4281741249 hasConcept C41008148 @default.
- W4281741249 hasConcept C4238864 @default.
- W4281741249 hasConcept C49545453 @default.
- W4281741249 hasConcept C50522688 @default.
- W4281741249 hasConcept C73555534 @default.
- W4281741249 hasConcept C75684735 @default.
- W4281741249 hasConceptScore W4281741249C119857082 @default.
- W4281741249 hasConceptScore W4281741249C124101348 @default.
- W4281741249 hasConceptScore W4281741249C127413603 @default.
- W4281741249 hasConceptScore W4281741249C144024400 @default.
- W4281741249 hasConceptScore W4281741249C147176958 @default.
- W4281741249 hasConceptScore W4281741249C148383697 @default.