Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281741481> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4281741481 endingPage "334" @default.
- W4281741481 startingPage "325" @default.
- W4281741481 abstract "The survival percentage of lung patients can be improved if pneumonia is detected early. Images of the chest X-ray (CXR) are the most common way of identifying and diagnosing pneumonia. A competent radiologist faces a difficult problem in detecting pneumonia from CXR images. Many people are at danger of contracting pneumonia, especially in developing countries where billions of people live in energy poverty and rely on polluting energy sources. Though there are effective tools in existence to prevent, diagnose and treat pneumonia, pneumonia-related deaths are prevalent in most of the countries. But only a small amount of health budgets is allocated to eradicate pneumonia. If the diagnosis of the disease is made in more reliable and cost effective way, tackling the disease won’t be a herculean task. Machine learning algorithms paved a great way to easily identify, diagnose and predict the disease with minimal amount of time. This paper represents the identification of pneumonia from chest X-Ray by implementing traditional machine learning algorithms with ensemble using optimal number of image features with the help of correlation co-efficient. Also deep learning approach has been implemented. The proposed method traditional machine learning approach and deep learning approach achieved accuracy rates of 93.57% and 93.59% and time required for pneumonia detection is 157,452 s (approx.) and 240,253 s (approx.) respectively." @default.
- W4281741481 created "2022-06-13" @default.
- W4281741481 creator A5012028243 @default.
- W4281741481 creator A5015660400 @default.
- W4281741481 creator A5054357230 @default.
- W4281741481 creator A5056052092 @default.
- W4281741481 date "2022-06-05" @default.
- W4281741481 modified "2023-09-24" @default.
- W4281741481 title "Detection of Pneumonia from Chest X-Ray images using Machine Learning" @default.
- W4281741481 cites W2532645418 @default.
- W4281741481 cites W2588893753 @default.
- W4281741481 cites W2790081550 @default.
- W4281741481 cites W2900877770 @default.
- W4281741481 cites W2909130454 @default.
- W4281741481 cites W2979466677 @default.
- W4281741481 cites W3162162849 @default.
- W4281741481 cites W3198276338 @default.
- W4281741481 cites W2951671848 @default.
- W4281741481 doi "https://doi.org/10.1177/1063293x221106501" @default.
- W4281741481 hasPublicationYear "2022" @default.
- W4281741481 type Work @default.
- W4281741481 citedByCount "0" @default.
- W4281741481 crossrefType "journal-article" @default.
- W4281741481 hasAuthorship W4281741481A5012028243 @default.
- W4281741481 hasAuthorship W4281741481A5015660400 @default.
- W4281741481 hasAuthorship W4281741481A5054357230 @default.
- W4281741481 hasAuthorship W4281741481A5056052092 @default.
- W4281741481 hasConcept C108583219 @default.
- W4281741481 hasConcept C119857082 @default.
- W4281741481 hasConcept C126322002 @default.
- W4281741481 hasConcept C154945302 @default.
- W4281741481 hasConcept C2777914695 @default.
- W4281741481 hasConcept C41008148 @default.
- W4281741481 hasConcept C71924100 @default.
- W4281741481 hasConceptScore W4281741481C108583219 @default.
- W4281741481 hasConceptScore W4281741481C119857082 @default.
- W4281741481 hasConceptScore W4281741481C126322002 @default.
- W4281741481 hasConceptScore W4281741481C154945302 @default.
- W4281741481 hasConceptScore W4281741481C2777914695 @default.
- W4281741481 hasConceptScore W4281741481C41008148 @default.
- W4281741481 hasConceptScore W4281741481C71924100 @default.
- W4281741481 hasIssue "4" @default.
- W4281741481 hasLocation W42817414811 @default.
- W4281741481 hasOpenAccess W4281741481 @default.
- W4281741481 hasPrimaryLocation W42817414811 @default.
- W4281741481 hasRelatedWork W2795261237 @default.
- W4281741481 hasRelatedWork W3014300295 @default.
- W4281741481 hasRelatedWork W3164822677 @default.
- W4281741481 hasRelatedWork W4223943233 @default.
- W4281741481 hasRelatedWork W4225161397 @default.
- W4281741481 hasRelatedWork W4312200629 @default.
- W4281741481 hasRelatedWork W4360585206 @default.
- W4281741481 hasRelatedWork W4364306694 @default.
- W4281741481 hasRelatedWork W4380075502 @default.
- W4281741481 hasRelatedWork W4380086463 @default.
- W4281741481 hasVolume "30" @default.
- W4281741481 isParatext "false" @default.
- W4281741481 isRetracted "false" @default.
- W4281741481 workType "article" @default.