Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281741752> ?p ?o ?g. }
- W4281741752 endingPage "6763" @default.
- W4281741752 startingPage "6763" @default.
- W4281741752 abstract "Following the outbreak of the COVID-19 pandemic, the continued emergence of major variant viruses has caused enormous damage worldwide by generating social and economic ripple effects, and the importance of PHSMs (Public Health and Social Measures) is being highlighted to cope with this severe situation. Accordingly, there has also been an increase in research related to a decision support system based on simulation approaches used as a basis for PHSMs. However, previous studies showed limitations impeding utilization as a decision support system for policy establishment and implementation, such as the failure to reflect changes in the effectiveness of PHSMs and the restriction to short-term forecasts. Therefore, this study proposes an LSTM-Autoencoder-based decision support system for establishing and implementing PHSMs. To overcome the limitations of existing studies, the proposed decision support system used a methodology for predicting the number of daily confirmed cases over multiple periods based on multiple output strategies and a methodology for rapidly identifying varies in policy effects based on anomaly detection. It was confirmed that the proposed decision support system demonstrated excellent performance compared to models used for time series analysis such as statistical models and deep learning models. In addition, we endeavored to increase the usability of the proposed decision support system by suggesting a transfer learning-based methodology that can efficiently reflect variations in policy effects. Finally, the decision support system proposed in this study provides a methodology that provides multi-period forecasts, identifying variations in policy effects, and efficiently reflects the effects of variation policies. It was intended to provide reasonable and realistic information for the establishment and implementation of PHSMs and, through this, to yield information expected to be highly useful, which had not been provided in the decision support systems presented in previous studies." @default.
- W4281741752 created "2022-06-13" @default.
- W4281741752 creator A5047290444 @default.
- W4281741752 creator A5059462369 @default.
- W4281741752 creator A5060214475 @default.
- W4281741752 creator A5077106438 @default.
- W4281741752 creator A5088922994 @default.
- W4281741752 creator A5088946512 @default.
- W4281741752 creator A5090064760 @default.
- W4281741752 date "2022-06-01" @default.
- W4281741752 modified "2023-09-26" @default.
- W4281741752 title "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic" @default.
- W4281741752 cites W2122646361 @default.
- W4281741752 cites W2137130182 @default.
- W4281741752 cites W3001118548 @default.
- W4281741752 cites W3012864042 @default.
- W4281741752 cites W3013215798 @default.
- W4281741752 cites W3013530892 @default.
- W4281741752 cites W3017311753 @default.
- W4281741752 cites W3032725243 @default.
- W4281741752 cites W3032971139 @default.
- W4281741752 cites W3033094519 @default.
- W4281741752 cites W3035537071 @default.
- W4281741752 cites W3036309913 @default.
- W4281741752 cites W3037898693 @default.
- W4281741752 cites W3049310425 @default.
- W4281741752 cites W3082709900 @default.
- W4281741752 cites W3083823297 @default.
- W4281741752 cites W3094737818 @default.
- W4281741752 cites W3106973085 @default.
- W4281741752 cites W3107979244 @default.
- W4281741752 cites W3118875258 @default.
- W4281741752 cites W3125676075 @default.
- W4281741752 cites W3135257712 @default.
- W4281741752 cites W3155587509 @default.
- W4281741752 cites W3157818903 @default.
- W4281741752 cites W3159901390 @default.
- W4281741752 cites W3169013110 @default.
- W4281741752 cites W3172587485 @default.
- W4281741752 cites W3182779474 @default.
- W4281741752 cites W3207662769 @default.
- W4281741752 cites W3207710923 @default.
- W4281741752 cites W3211150081 @default.
- W4281741752 cites W3213713597 @default.
- W4281741752 cites W4206576368 @default.
- W4281741752 cites W4206609874 @default.
- W4281741752 cites W4206712009 @default.
- W4281741752 cites W4210339945 @default.
- W4281741752 cites W4210347370 @default.
- W4281741752 cites W4220828814 @default.
- W4281741752 cites W4247836593 @default.
- W4281741752 doi "https://doi.org/10.3390/ijerph19116763" @default.
- W4281741752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35682349" @default.
- W4281741752 hasPublicationYear "2022" @default.
- W4281741752 type Work @default.
- W4281741752 citedByCount "2" @default.
- W4281741752 countsByYear W42817417522023 @default.
- W4281741752 crossrefType "journal-article" @default.
- W4281741752 hasAuthorship W4281741752A5047290444 @default.
- W4281741752 hasAuthorship W4281741752A5059462369 @default.
- W4281741752 hasAuthorship W4281741752A5060214475 @default.
- W4281741752 hasAuthorship W4281741752A5077106438 @default.
- W4281741752 hasAuthorship W4281741752A5088922994 @default.
- W4281741752 hasAuthorship W4281741752A5088946512 @default.
- W4281741752 hasAuthorship W4281741752A5090064760 @default.
- W4281741752 hasBestOaLocation W42817417521 @default.
- W4281741752 hasConcept C101738243 @default.
- W4281741752 hasConcept C107327155 @default.
- W4281741752 hasConcept C107457646 @default.
- W4281741752 hasConcept C108583219 @default.
- W4281741752 hasConcept C112930515 @default.
- W4281741752 hasConcept C119857082 @default.
- W4281741752 hasConcept C124101348 @default.
- W4281741752 hasConcept C144133560 @default.
- W4281741752 hasConcept C154945302 @default.
- W4281741752 hasConcept C170130773 @default.
- W4281741752 hasConcept C41008148 @default.
- W4281741752 hasConceptScore W4281741752C101738243 @default.
- W4281741752 hasConceptScore W4281741752C107327155 @default.
- W4281741752 hasConceptScore W4281741752C107457646 @default.
- W4281741752 hasConceptScore W4281741752C108583219 @default.
- W4281741752 hasConceptScore W4281741752C112930515 @default.
- W4281741752 hasConceptScore W4281741752C119857082 @default.
- W4281741752 hasConceptScore W4281741752C124101348 @default.
- W4281741752 hasConceptScore W4281741752C144133560 @default.
- W4281741752 hasConceptScore W4281741752C154945302 @default.
- W4281741752 hasConceptScore W4281741752C170130773 @default.
- W4281741752 hasConceptScore W4281741752C41008148 @default.
- W4281741752 hasIssue "11" @default.
- W4281741752 hasLocation W42817417521 @default.
- W4281741752 hasLocation W42817417522 @default.
- W4281741752 hasLocation W42817417523 @default.
- W4281741752 hasOpenAccess W4281741752 @default.
- W4281741752 hasPrimaryLocation W42817417521 @default.
- W4281741752 hasRelatedWork W2100369842 @default.
- W4281741752 hasRelatedWork W2669956259 @default.
- W4281741752 hasRelatedWork W2961085424 @default.
- W4281741752 hasRelatedWork W2998168123 @default.