Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281747656> ?p ?o ?g. }
- W4281747656 endingPage "3456" @default.
- W4281747656 startingPage "3456" @default.
- W4281747656 abstract "Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications." @default.
- W4281747656 created "2022-06-13" @default.
- W4281747656 creator A5004867842 @default.
- W4281747656 creator A5028414708 @default.
- W4281747656 creator A5030859062 @default.
- W4281747656 creator A5035768559 @default.
- W4281747656 creator A5037350884 @default.
- W4281747656 creator A5057105613 @default.
- W4281747656 creator A5058674376 @default.
- W4281747656 creator A5072636471 @default.
- W4281747656 creator A5082728601 @default.
- W4281747656 date "2022-05-27" @default.
- W4281747656 modified "2023-10-01" @default.
- W4281747656 title "Data-Driven and Multiscale Modeling of DNA-Templated Dye Aggregates" @default.
- W4281747656 cites W1968082380 @default.
- W4281747656 cites W1976161355 @default.
- W4281747656 cites W1976499671 @default.
- W4281747656 cites W1980420051 @default.
- W4281747656 cites W1997151511 @default.
- W4281747656 cites W1999311751 @default.
- W4281747656 cites W2001817712 @default.
- W4281747656 cites W2007729837 @default.
- W4281747656 cites W2011215428 @default.
- W4281747656 cites W2027583545 @default.
- W4281747656 cites W2034078366 @default.
- W4281747656 cites W2038083805 @default.
- W4281747656 cites W2039926130 @default.
- W4281747656 cites W2044499532 @default.
- W4281747656 cites W2057477511 @default.
- W4281747656 cites W2058468006 @default.
- W4281747656 cites W2058485871 @default.
- W4281747656 cites W2063879170 @default.
- W4281747656 cites W2066369298 @default.
- W4281747656 cites W2066402087 @default.
- W4281747656 cites W2069688935 @default.
- W4281747656 cites W2070511522 @default.
- W4281747656 cites W2081693079 @default.
- W4281747656 cites W2090915778 @default.
- W4281747656 cites W2094760170 @default.
- W4281747656 cites W2100523398 @default.
- W4281747656 cites W2116471116 @default.
- W4281747656 cites W2128572087 @default.
- W4281747656 cites W2131642901 @default.
- W4281747656 cites W2136545558 @default.
- W4281747656 cites W2139680801 @default.
- W4281747656 cites W2147993766 @default.
- W4281747656 cites W2150697053 @default.
- W4281747656 cites W2150852355 @default.
- W4281747656 cites W2153321560 @default.
- W4281747656 cites W2155503801 @default.
- W4281747656 cites W2168335282 @default.
- W4281747656 cites W2171268876 @default.
- W4281747656 cites W2174403310 @default.
- W4281747656 cites W2191802178 @default.
- W4281747656 cites W2224680035 @default.
- W4281747656 cites W2276364486 @default.
- W4281747656 cites W2316392160 @default.
- W4281747656 cites W2320751612 @default.
- W4281747656 cites W2323215550 @default.
- W4281747656 cites W2326606466 @default.
- W4281747656 cites W2433523887 @default.
- W4281747656 cites W2461113579 @default.
- W4281747656 cites W2493799904 @default.
- W4281747656 cites W2524857160 @default.
- W4281747656 cites W2548450001 @default.
- W4281747656 cites W2560738754 @default.
- W4281747656 cites W2573528081 @default.
- W4281747656 cites W2592364803 @default.
- W4281747656 cites W2612746433 @default.
- W4281747656 cites W2739145438 @default.
- W4281747656 cites W2745893966 @default.
- W4281747656 cites W2755674605 @default.
- W4281747656 cites W2769669959 @default.
- W4281747656 cites W2770566781 @default.
- W4281747656 cites W2787601810 @default.
- W4281747656 cites W2793939107 @default.
- W4281747656 cites W2794278210 @default.
- W4281747656 cites W2800793736 @default.
- W4281747656 cites W2802369146 @default.
- W4281747656 cites W2899079754 @default.
- W4281747656 cites W2907908716 @default.
- W4281747656 cites W2911561345 @default.
- W4281747656 cites W2914088070 @default.
- W4281747656 cites W2946223420 @default.
- W4281747656 cites W2966228955 @default.
- W4281747656 cites W2969986879 @default.
- W4281747656 cites W2992302948 @default.
- W4281747656 cites W3021330583 @default.
- W4281747656 cites W3036776898 @default.
- W4281747656 cites W3039533824 @default.
- W4281747656 cites W3083406432 @default.
- W4281747656 cites W3083973785 @default.
- W4281747656 cites W3091163601 @default.
- W4281747656 cites W3092659537 @default.
- W4281747656 cites W3093597902 @default.
- W4281747656 cites W3097145107 @default.
- W4281747656 cites W3104097946 @default.
- W4281747656 cites W3117618054 @default.