Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281749420> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4281749420 endingPage "6" @default.
- W4281749420 startingPage "1" @default.
- W4281749420 abstract "Neuropsychological tests (NPTs) are widely used tools to evaluate cognitive functioning. The interpretation of these tests can be time-consuming and requires a specialized clinician. For this reason, we trained machine learning models that detect normal controls (NC), cognitive impairment (CI), and dementia among subjects.A total number of 14,927 subject datasets were collected from the formal neuropsychological assessments Seoul Neuropsychological Screening Battery (SNSB) by well-qualified neuropsychologists. The dataset included 44 NPTs of SNSB, age, education level, and diagnosis of each participant. The dataset was preprocessed and classified according to three different classes NC, CI, and dementia. We trained machine-learning with a supervised machine learning classifier algorithm support vector machine (SVM) 30 times with classification from scikit-learn (https://scikit-learn.org/stable/) to distinguish the prediction accuracy, sensitivity, and specificity of the models; NC vs. CI, NC vs. dementia, and NC vs. CI vs. dementia. Confusion matrixes were plotted using the testing dataset for each model.The trained model's 30 times mean accuracies for predicting cognitive states were as follows; NC vs. CI model was 88.61 ± 1.44%, NC vs. dementia model was 97.74 ± 5.78%, and NC vs. CI vs. dementia model was 83.85 ± 4.33%. NC vs. dementia showed the highest accuracy, sensitivity, and specificity of 97.74 ± 5.78, 97.99 ± 5.78, and 96.08 ± 4.33% in predicting dementia among subjects, respectively.Based on the results, the SVM algorithm is more appropriate in training models on an imbalanced dataset for a good prediction accuracy compared to natural network and logistic regression algorithms. The NC vs. dementia machine-learning trained model with SVM based on NPTs SNSB dataset could assist neuropsychologists in classifying the cognitive function of subjects." @default.
- W4281749420 created "2022-06-13" @default.
- W4281749420 creator A5001679413 @default.
- W4281749420 creator A5012106415 @default.
- W4281749420 creator A5013951360 @default.
- W4281749420 creator A5040919963 @default.
- W4281749420 date "2022-06-02" @default.
- W4281749420 modified "2023-10-14" @default.
- W4281749420 title "Neuropsychological test using machine learning for cognitive impairment screening" @default.
- W4281749420 cites W1982289454 @default.
- W4281749420 cites W1991952617 @default.
- W4281749420 cites W2004885407 @default.
- W4281749420 cites W2054837969 @default.
- W4281749420 cites W2093602450 @default.
- W4281749420 cites W2125630263 @default.
- W4281749420 cites W2149049835 @default.
- W4281749420 cites W2283441664 @default.
- W4281749420 cites W2622823187 @default.
- W4281749420 cites W2899213164 @default.
- W4281749420 cites W2943491685 @default.
- W4281749420 cites W2989646516 @default.
- W4281749420 cites W3041172827 @default.
- W4281749420 cites W3045848016 @default.
- W4281749420 cites W3128219323 @default.
- W4281749420 cites W4238243461 @default.
- W4281749420 cites W4297851085 @default.
- W4281749420 doi "https://doi.org/10.1080/23279095.2022.2078210" @default.
- W4281749420 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35653621" @default.
- W4281749420 hasPublicationYear "2022" @default.
- W4281749420 type Work @default.
- W4281749420 citedByCount "0" @default.
- W4281749420 crossrefType "journal-article" @default.
- W4281749420 hasAuthorship W4281749420A5001679413 @default.
- W4281749420 hasAuthorship W4281749420A5012106415 @default.
- W4281749420 hasAuthorship W4281749420A5013951360 @default.
- W4281749420 hasAuthorship W4281749420A5040919963 @default.
- W4281749420 hasConcept C118552586 @default.
- W4281749420 hasConcept C119857082 @default.
- W4281749420 hasConcept C12267149 @default.
- W4281749420 hasConcept C126322002 @default.
- W4281749420 hasConcept C14216870 @default.
- W4281749420 hasConcept C154945302 @default.
- W4281749420 hasConcept C15744967 @default.
- W4281749420 hasConcept C169900460 @default.
- W4281749420 hasConcept C2776811091 @default.
- W4281749420 hasConcept C2779134260 @default.
- W4281749420 hasConcept C2779483572 @default.
- W4281749420 hasConcept C2984915365 @default.
- W4281749420 hasConcept C41008148 @default.
- W4281749420 hasConcept C6057870 @default.
- W4281749420 hasConcept C71924100 @default.
- W4281749420 hasConceptScore W4281749420C118552586 @default.
- W4281749420 hasConceptScore W4281749420C119857082 @default.
- W4281749420 hasConceptScore W4281749420C12267149 @default.
- W4281749420 hasConceptScore W4281749420C126322002 @default.
- W4281749420 hasConceptScore W4281749420C14216870 @default.
- W4281749420 hasConceptScore W4281749420C154945302 @default.
- W4281749420 hasConceptScore W4281749420C15744967 @default.
- W4281749420 hasConceptScore W4281749420C169900460 @default.
- W4281749420 hasConceptScore W4281749420C2776811091 @default.
- W4281749420 hasConceptScore W4281749420C2779134260 @default.
- W4281749420 hasConceptScore W4281749420C2779483572 @default.
- W4281749420 hasConceptScore W4281749420C2984915365 @default.
- W4281749420 hasConceptScore W4281749420C41008148 @default.
- W4281749420 hasConceptScore W4281749420C6057870 @default.
- W4281749420 hasConceptScore W4281749420C71924100 @default.
- W4281749420 hasFunder F4320321408 @default.
- W4281749420 hasFunder F4320322120 @default.
- W4281749420 hasLocation W42817494201 @default.
- W4281749420 hasLocation W42817494202 @default.
- W4281749420 hasOpenAccess W4281749420 @default.
- W4281749420 hasPrimaryLocation W42817494201 @default.
- W4281749420 hasRelatedWork W178892638 @default.
- W4281749420 hasRelatedWork W1976472841 @default.
- W4281749420 hasRelatedWork W1979765152 @default.
- W4281749420 hasRelatedWork W2111687911 @default.
- W4281749420 hasRelatedWork W2155060635 @default.
- W4281749420 hasRelatedWork W2163743993 @default.
- W4281749420 hasRelatedWork W2169058114 @default.
- W4281749420 hasRelatedWork W2972983216 @default.
- W4281749420 hasRelatedWork W3044569346 @default.
- W4281749420 hasRelatedWork W3134060478 @default.
- W4281749420 isParatext "false" @default.
- W4281749420 isRetracted "false" @default.
- W4281749420 workType "article" @default.