Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281750281> ?p ?o ?g. }
- W4281750281 endingPage "104346" @default.
- W4281750281 startingPage "104346" @default.
- W4281750281 abstract "Crack images collected from civil infrastructures through unmanned aerial vehicles suffer from motion blur and insufficient resolution, which reduces the accuracy of microcrack detection. Therefore, an automatic microcrack detection method based on super-resolution reconstruction (SRR) and semantic segmentation is proposed. Super-resolution (SR) images reconstructed by the proposed deep learning-based SRR model were input into the proposed semantic segmentation network for crack segmentation, and the length and width of cracks were measured through an improved medial axis transform approach. The accuracy of crack segmentation and feature quantification for SR images obtained using the deep learning-based SRR is significantly improved compared with low-resolution fuzzy images. The effects of three parameters on the results were analyzed. Compared with the Bicubic testset, the Intersection-over-Union of the SR testset is improved by 17% when a magnification factor of 4 is adopted. The results show that the proposed method achieves good performance in detecting concrete cracks. • A crack detection method based on deep learning SRR and segmentation is proposed. • SRFBN with the least number of parameters achieves the best results on crack SRR. • The F1-score and IoU obtained from the SR testset are improved by 13% and 17%. • The training set combining natural scene images with crack images performs best. • The effects of training sets and magnification factors on crack SRR are discussed." @default.
- W4281750281 created "2022-06-13" @default.
- W4281750281 creator A5036360712 @default.
- W4281750281 creator A5043145803 @default.
- W4281750281 creator A5045984275 @default.
- W4281750281 creator A5046597133 @default.
- W4281750281 creator A5088960729 @default.
- W4281750281 date "2022-08-01" @default.
- W4281750281 modified "2023-09-29" @default.
- W4281750281 title "Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network" @default.
- W4281750281 cites W1184431690 @default.
- W4281750281 cites W2071905184 @default.
- W4281750281 cites W2090409217 @default.
- W4281750281 cites W2093303892 @default.
- W4281750281 cites W2400532974 @default.
- W4281750281 cites W2598457882 @default.
- W4281750281 cites W2753792608 @default.
- W4281750281 cites W2757455114 @default.
- W4281750281 cites W2768955070 @default.
- W4281750281 cites W2796506861 @default.
- W4281750281 cites W2887695188 @default.
- W4281750281 cites W2889494142 @default.
- W4281750281 cites W2890650144 @default.
- W4281750281 cites W2901354392 @default.
- W4281750281 cites W2904718489 @default.
- W4281750281 cites W2922073063 @default.
- W4281750281 cites W2971843891 @default.
- W4281750281 cites W2973007446 @default.
- W4281750281 cites W2979201281 @default.
- W4281750281 cites W2983902176 @default.
- W4281750281 cites W2989663977 @default.
- W4281750281 cites W2992937964 @default.
- W4281750281 cites W3003071623 @default.
- W4281750281 cites W3005498204 @default.
- W4281750281 cites W3009590718 @default.
- W4281750281 cites W3029797938 @default.
- W4281750281 cites W3033645921 @default.
- W4281750281 cites W3034609614 @default.
- W4281750281 cites W3035495511 @default.
- W4281750281 cites W3036991312 @default.
- W4281750281 cites W3040786507 @default.
- W4281750281 cites W3040828350 @default.
- W4281750281 cites W3044580098 @default.
- W4281750281 cites W3087277009 @default.
- W4281750281 cites W3091461723 @default.
- W4281750281 cites W3103010481 @default.
- W4281750281 cites W3112798201 @default.
- W4281750281 cites W3130267610 @default.
- W4281750281 cites W3144029257 @default.
- W4281750281 cites W4212995112 @default.
- W4281750281 doi "https://doi.org/10.1016/j.autcon.2022.104346" @default.
- W4281750281 hasPublicationYear "2022" @default.
- W4281750281 type Work @default.
- W4281750281 citedByCount "25" @default.
- W4281750281 countsByYear W42817502812022 @default.
- W4281750281 countsByYear W42817502812023 @default.
- W4281750281 crossrefType "journal-article" @default.
- W4281750281 hasAuthorship W4281750281A5036360712 @default.
- W4281750281 hasAuthorship W4281750281A5043145803 @default.
- W4281750281 hasAuthorship W4281750281A5045984275 @default.
- W4281750281 hasAuthorship W4281750281A5046597133 @default.
- W4281750281 hasAuthorship W4281750281A5088960729 @default.
- W4281750281 hasConcept C11413529 @default.
- W4281750281 hasConcept C115961682 @default.
- W4281750281 hasConcept C127313418 @default.
- W4281750281 hasConcept C127413603 @default.
- W4281750281 hasConcept C141239990 @default.
- W4281750281 hasConcept C154945302 @default.
- W4281750281 hasConcept C31972630 @default.
- W4281750281 hasConcept C41008148 @default.
- W4281750281 hasConcept C66938386 @default.
- W4281750281 hasConcept C89600930 @default.
- W4281750281 hasConceptScore W4281750281C11413529 @default.
- W4281750281 hasConceptScore W4281750281C115961682 @default.
- W4281750281 hasConceptScore W4281750281C127313418 @default.
- W4281750281 hasConceptScore W4281750281C127413603 @default.
- W4281750281 hasConceptScore W4281750281C141239990 @default.
- W4281750281 hasConceptScore W4281750281C154945302 @default.
- W4281750281 hasConceptScore W4281750281C31972630 @default.
- W4281750281 hasConceptScore W4281750281C41008148 @default.
- W4281750281 hasConceptScore W4281750281C66938386 @default.
- W4281750281 hasConceptScore W4281750281C89600930 @default.
- W4281750281 hasLocation W42817502811 @default.
- W4281750281 hasOpenAccess W4281750281 @default.
- W4281750281 hasPrimaryLocation W42817502811 @default.
- W4281750281 hasRelatedWork W1669643531 @default.
- W4281750281 hasRelatedWork W2005437358 @default.
- W4281750281 hasRelatedWork W2008656436 @default.
- W4281750281 hasRelatedWork W2023558673 @default.
- W4281750281 hasRelatedWork W2039154422 @default.
- W4281750281 hasRelatedWork W2122581818 @default.
- W4281750281 hasRelatedWork W2134924024 @default.
- W4281750281 hasRelatedWork W2517104666 @default.
- W4281750281 hasRelatedWork W2895616727 @default.
- W4281750281 hasRelatedWork W2182382398 @default.
- W4281750281 hasVolume "140" @default.
- W4281750281 isParatext "false" @default.
- W4281750281 isRetracted "false" @default.