Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281750612> ?p ?o ?g. }
- W4281750612 endingPage "9" @default.
- W4281750612 startingPage "1" @default.
- W4281750612 abstract "Convolutional neural network (CNN) is an important way to solve the problems of image classification and recognition. It can realize effective feature representation and make continuous breakthroughs in the field of image recognition, but it needs a lot of time in the training process. At the same time, random forest (RF) has the advantages of fast training speed and high classification accuracy. Aiming at the problem of image classification and recognition, this paper proposes a hybrid model based on CNN, which inputs the features extracted by CNN into RF for classification. Since the random weight network can also obtain valid results, the gradient algorithm is not used to adjust the network parameters to avoid consuming a lot of time. Finally, experiments are conducted on MNIST dataset and rotated MNIST dataset, and the results show that the classification accuracy of the hybrid model has improved more than RF, and also, the generalization ability has been improved." @default.
- W4281750612 created "2022-06-13" @default.
- W4281750612 creator A5084624885 @default.
- W4281750612 date "2022-06-03" @default.
- W4281750612 modified "2023-09-29" @default.
- W4281750612 title "Image Classification and Recognition Based on Deep Learning and Random Forest Algorithm" @default.
- W4281750612 cites W1996061706 @default.
- W4281750612 cites W2005330159 @default.
- W4281750612 cites W2008771257 @default.
- W4281750612 cites W2046113982 @default.
- W4281750612 cites W2064354376 @default.
- W4281750612 cites W2091878796 @default.
- W4281750612 cites W2091967951 @default.
- W4281750612 cites W2111256709 @default.
- W4281750612 cites W2132424470 @default.
- W4281750612 cites W2167753478 @default.
- W4281750612 cites W2185967267 @default.
- W4281750612 cites W2276973678 @default.
- W4281750612 cites W2331071973 @default.
- W4281750612 cites W2570194385 @default.
- W4281750612 cites W2790275230 @default.
- W4281750612 cites W2794045421 @default.
- W4281750612 cites W2920827296 @default.
- W4281750612 cites W3013330736 @default.
- W4281750612 cites W3148181069 @default.
- W4281750612 doi "https://doi.org/10.1155/2022/2013181" @default.
- W4281750612 hasPublicationYear "2022" @default.
- W4281750612 type Work @default.
- W4281750612 citedByCount "4" @default.
- W4281750612 countsByYear W42817506122022 @default.
- W4281750612 countsByYear W42817506122023 @default.
- W4281750612 crossrefType "journal-article" @default.
- W4281750612 hasAuthorship W4281750612A5084624885 @default.
- W4281750612 hasBestOaLocation W42817506121 @default.
- W4281750612 hasConcept C111919701 @default.
- W4281750612 hasConcept C115961682 @default.
- W4281750612 hasConcept C119857082 @default.
- W4281750612 hasConcept C134306372 @default.
- W4281750612 hasConcept C138885662 @default.
- W4281750612 hasConcept C153180895 @default.
- W4281750612 hasConcept C154945302 @default.
- W4281750612 hasConcept C169258074 @default.
- W4281750612 hasConcept C177148314 @default.
- W4281750612 hasConcept C17744445 @default.
- W4281750612 hasConcept C190502265 @default.
- W4281750612 hasConcept C199539241 @default.
- W4281750612 hasConcept C202444582 @default.
- W4281750612 hasConcept C2776359362 @default.
- W4281750612 hasConcept C2776401178 @default.
- W4281750612 hasConcept C33923547 @default.
- W4281750612 hasConcept C41008148 @default.
- W4281750612 hasConcept C41895202 @default.
- W4281750612 hasConcept C50644808 @default.
- W4281750612 hasConcept C75294576 @default.
- W4281750612 hasConcept C81363708 @default.
- W4281750612 hasConcept C94625758 @default.
- W4281750612 hasConcept C9652623 @default.
- W4281750612 hasConcept C98045186 @default.
- W4281750612 hasConceptScore W4281750612C111919701 @default.
- W4281750612 hasConceptScore W4281750612C115961682 @default.
- W4281750612 hasConceptScore W4281750612C119857082 @default.
- W4281750612 hasConceptScore W4281750612C134306372 @default.
- W4281750612 hasConceptScore W4281750612C138885662 @default.
- W4281750612 hasConceptScore W4281750612C153180895 @default.
- W4281750612 hasConceptScore W4281750612C154945302 @default.
- W4281750612 hasConceptScore W4281750612C169258074 @default.
- W4281750612 hasConceptScore W4281750612C177148314 @default.
- W4281750612 hasConceptScore W4281750612C17744445 @default.
- W4281750612 hasConceptScore W4281750612C190502265 @default.
- W4281750612 hasConceptScore W4281750612C199539241 @default.
- W4281750612 hasConceptScore W4281750612C202444582 @default.
- W4281750612 hasConceptScore W4281750612C2776359362 @default.
- W4281750612 hasConceptScore W4281750612C2776401178 @default.
- W4281750612 hasConceptScore W4281750612C33923547 @default.
- W4281750612 hasConceptScore W4281750612C41008148 @default.
- W4281750612 hasConceptScore W4281750612C41895202 @default.
- W4281750612 hasConceptScore W4281750612C50644808 @default.
- W4281750612 hasConceptScore W4281750612C75294576 @default.
- W4281750612 hasConceptScore W4281750612C81363708 @default.
- W4281750612 hasConceptScore W4281750612C94625758 @default.
- W4281750612 hasConceptScore W4281750612C9652623 @default.
- W4281750612 hasConceptScore W4281750612C98045186 @default.
- W4281750612 hasLocation W42817506121 @default.
- W4281750612 hasOpenAccess W4281750612 @default.
- W4281750612 hasPrimaryLocation W42817506121 @default.
- W4281750612 hasRelatedWork W2742991909 @default.
- W4281750612 hasRelatedWork W2767651786 @default.
- W4281750612 hasRelatedWork W2792873414 @default.
- W4281750612 hasRelatedWork W2810865670 @default.
- W4281750612 hasRelatedWork W2912288872 @default.
- W4281750612 hasRelatedWork W2914030578 @default.
- W4281750612 hasRelatedWork W2964383635 @default.
- W4281750612 hasRelatedWork W3156786002 @default.
- W4281750612 hasRelatedWork W3208266890 @default.
- W4281750612 hasRelatedWork W785854688 @default.
- W4281750612 hasVolume "2022" @default.
- W4281750612 isParatext "false" @default.
- W4281750612 isRetracted "false" @default.