Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281751567> ?p ?o ?g. }
- W4281751567 abstract "Subgraph counting is a fundamental graph analysis task which has been widely used in many applications. As the problem of subgraph counting is NP-complete and hence intractable, approximate solutions have been widely studied, which fail to work with large and complex query graphs. Alternatively, Machine Learning techniques have been recently applied for this problem, yet the existing ML approaches either only support very small data graphs or cannot make full use of the data graph information, which inherently limits their scalability, estimation accuracies and robustness." @default.
- W4281751567 created "2022-06-13" @default.
- W4281751567 creator A5042610567 @default.
- W4281751567 creator A5042973046 @default.
- W4281751567 creator A5046220908 @default.
- W4281751567 creator A5046597133 @default.
- W4281751567 creator A5048597337 @default.
- W4281751567 creator A5090602006 @default.
- W4281751567 date "2022-06-10" @default.
- W4281751567 modified "2023-09-29" @default.
- W4281751567 title "Neural Subgraph Counting with Wasserstein Estimator" @default.
- W4281751567 cites W1614522028 @default.
- W4281751567 cites W1976196182 @default.
- W4281751567 cites W2008865455 @default.
- W4281751567 cites W2012066443 @default.
- W4281751567 cites W2031291897 @default.
- W4281751567 cites W2035173902 @default.
- W4281751567 cites W2060480410 @default.
- W4281751567 cites W2074584493 @default.
- W4281751567 cites W2100387739 @default.
- W4281751567 cites W2100586946 @default.
- W4281751567 cites W2109110326 @default.
- W4281751567 cites W2109154902 @default.
- W4281751567 cites W2115467367 @default.
- W4281751567 cites W2122909744 @default.
- W4281751567 cites W2124533460 @default.
- W4281751567 cites W2132823934 @default.
- W4281751567 cites W2140840007 @default.
- W4281751567 cites W2141629057 @default.
- W4281751567 cites W2142785776 @default.
- W4281751567 cites W2143363350 @default.
- W4281751567 cites W2147405597 @default.
- W4281751567 cites W2157312249 @default.
- W4281751567 cites W2161588601 @default.
- W4281751567 cites W2241555812 @default.
- W4281751567 cites W2241571695 @default.
- W4281751567 cites W2243803726 @default.
- W4281751567 cites W2264968112 @default.
- W4281751567 cites W2296159197 @default.
- W4281751567 cites W2396309311 @default.
- W4281751567 cites W2421547754 @default.
- W4281751567 cites W2423652555 @default.
- W4281751567 cites W2464477051 @default.
- W4281751567 cites W2577167493 @default.
- W4281751567 cites W2583739452 @default.
- W4281751567 cites W2759633270 @default.
- W4281751567 cites W2786268876 @default.
- W4281751567 cites W2794645646 @default.
- W4281751567 cites W2795196889 @default.
- W4281751567 cites W2798499404 @default.
- W4281751567 cites W2943605315 @default.
- W4281751567 cites W2945390216 @default.
- W4281751567 cites W2948359422 @default.
- W4281751567 cites W2950833175 @default.
- W4281751567 cites W2962756421 @default.
- W4281751567 cites W2963942532 @default.
- W4281751567 cites W2965857891 @default.
- W4281751567 cites W2970629282 @default.
- W4281751567 cites W2998249308 @default.
- W4281751567 cites W3028301204 @default.
- W4281751567 cites W3029446523 @default.
- W4281751567 cites W3030639942 @default.
- W4281751567 cites W3030994385 @default.
- W4281751567 cites W3081214609 @default.
- W4281751567 cites W3097225903 @default.
- W4281751567 cites W3104097132 @default.
- W4281751567 cites W3135378849 @default.
- W4281751567 cites W3137504194 @default.
- W4281751567 cites W3155986400 @default.
- W4281751567 cites W3169519622 @default.
- W4281751567 cites W3171879699 @default.
- W4281751567 cites W3173361933 @default.
- W4281751567 cites W3176186668 @default.
- W4281751567 cites W3176434378 @default.
- W4281751567 cites W3183953540 @default.
- W4281751567 cites W4210257598 @default.
- W4281751567 doi "https://doi.org/10.1145/3514221.3526163" @default.
- W4281751567 hasPublicationYear "2022" @default.
- W4281751567 type Work @default.
- W4281751567 citedByCount "5" @default.
- W4281751567 countsByYear W42817515672023 @default.
- W4281751567 crossrefType "proceedings-article" @default.
- W4281751567 hasAuthorship W4281751567A5042610567 @default.
- W4281751567 hasAuthorship W4281751567A5042973046 @default.
- W4281751567 hasAuthorship W4281751567A5046220908 @default.
- W4281751567 hasAuthorship W4281751567A5046597133 @default.
- W4281751567 hasAuthorship W4281751567A5048597337 @default.
- W4281751567 hasAuthorship W4281751567A5090602006 @default.
- W4281751567 hasBestOaLocation W42817515672 @default.
- W4281751567 hasConcept C105795698 @default.
- W4281751567 hasConcept C154945302 @default.
- W4281751567 hasConcept C185429906 @default.
- W4281751567 hasConcept C33923547 @default.
- W4281751567 hasConcept C41008148 @default.
- W4281751567 hasConceptScore W4281751567C105795698 @default.
- W4281751567 hasConceptScore W4281751567C154945302 @default.
- W4281751567 hasConceptScore W4281751567C185429906 @default.
- W4281751567 hasConceptScore W4281751567C33923547 @default.
- W4281751567 hasConceptScore W4281751567C41008148 @default.
- W4281751567 hasFunder F4320334704 @default.