Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281752382> ?p ?o ?g. }
- W4281752382 endingPage "718" @default.
- W4281752382 startingPage "709" @default.
- W4281752382 abstract "To identify predictors of a true scaphoid fracture among patients with radial wrist pain following acute trauma, train 5 machine learning (ML) algorithms in predicting scaphoid fracture probability, and design a decision rule to initiate advanced imaging in high-risk patients.Two prospective cohorts including 422 patients with radial wrist pain following wrist trauma were combined. There were 117 scaphoid fractures (28%) confirmed on computed tomography, magnetic resonance imaging, or radiographs. Eighteen fractures (15%) were occult. Predictors of a scaphoid fracture were identified among demographics, mechanism of injury and examination maneuvers. Five ML-algorithms were trained in calculating scaphoid fracture probability. ML-algorithms were assessed on ability to discriminate between patients with and without a fracture (area under the receiver operating characteristic curve), agreement between observed and predicted probabilities (calibration), and overall performance (Brier score). The best performing ML-algorithm was incorporated into a probability calculator. A decision rule was proposed to initiate advanced imaging among patients with negative radiographs.Pain over the scaphoid on ulnar deviation, sex, age, and mechanism of injury were most strongly associated with a true scaphoid fracture. The best performing ML-algorithm yielded an area under the receiver operating characteristic curve, calibration slope, intercept, and Brier score of 0.77, 0.84, -0.01 and 0.159, respectively. The ML-derived decision rule proposes to initiate advanced imaging in patients with radial-sided wrist pain, negative radiographs, and a fracture probability of ≥10%. When applied to our cohort, this would yield 100% sensitivity, 38% specificity, and would have reduced the number of patients undergoing advanced imaging by 36% without missing a fracture.The ML-algorithm accurately calculated scaphoid fracture probability based on scaphoid pain on ulnar deviation, sex, age, and mechanism of injury. The ML-decision rule may reduce the number of patients undergoing advanced imaging by a third with a small risk of missing a fracture. External validation is required before implementation.Diagnostic II." @default.
- W4281752382 created "2022-06-13" @default.
- W4281752382 creator A5001238300 @default.
- W4281752382 creator A5007177259 @default.
- W4281752382 creator A5014320610 @default.
- W4281752382 creator A5022645708 @default.
- W4281752382 creator A5024838044 @default.
- W4281752382 creator A5027690715 @default.
- W4281752382 creator A5028580497 @default.
- W4281752382 creator A5032292778 @default.
- W4281752382 creator A5034541075 @default.
- W4281752382 creator A5045414174 @default.
- W4281752382 creator A5048365624 @default.
- W4281752382 creator A5055866859 @default.
- W4281752382 creator A5064300340 @default.
- W4281752382 creator A5064797135 @default.
- W4281752382 creator A5073534215 @default.
- W4281752382 creator A5073655083 @default.
- W4281752382 creator A5085086543 @default.
- W4281752382 creator A5087398563 @default.
- W4281752382 creator A5087683989 @default.
- W4281752382 creator A5090368131 @default.
- W4281752382 date "2022-08-01" @default.
- W4281752382 modified "2023-09-27" @default.
- W4281752382 title "A Machine Learning Algorithm to Estimate the Probability of a True Scaphoid Fracture After Wrist Trauma" @default.
- W4281752382 cites W1994682257 @default.
- W4281752382 cites W2007451865 @default.
- W4281752382 cites W2036211005 @default.
- W4281752382 cites W2064186732 @default.
- W4281752382 cites W2065412675 @default.
- W4281752382 cites W2087479654 @default.
- W4281752382 cites W2093103229 @default.
- W4281752382 cites W2119910794 @default.
- W4281752382 cites W2122335173 @default.
- W4281752382 cites W2132274601 @default.
- W4281752382 cites W2150879210 @default.
- W4281752382 cites W2153310730 @default.
- W4281752382 cites W2154286581 @default.
- W4281752382 cites W2168301949 @default.
- W4281752382 cites W2178206469 @default.
- W4281752382 cites W2562251009 @default.
- W4281752382 cites W2581082771 @default.
- W4281752382 cites W2752349109 @default.
- W4281752382 cites W2761811342 @default.
- W4281752382 cites W2776581140 @default.
- W4281752382 cites W2883150385 @default.
- W4281752382 cites W2888528836 @default.
- W4281752382 cites W2889281787 @default.
- W4281752382 cites W2901315505 @default.
- W4281752382 cites W2901466278 @default.
- W4281752382 cites W2909953525 @default.
- W4281752382 cites W2913997948 @default.
- W4281752382 cites W2956226132 @default.
- W4281752382 cites W2981273439 @default.
- W4281752382 cites W2992665713 @default.
- W4281752382 cites W3010187017 @default.
- W4281752382 cites W3029050330 @default.
- W4281752382 cites W3089623878 @default.
- W4281752382 cites W3094354181 @default.
- W4281752382 cites W3097023869 @default.
- W4281752382 cites W3117278409 @default.
- W4281752382 doi "https://doi.org/10.1016/j.jhsa.2022.02.023" @default.
- W4281752382 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35667955" @default.
- W4281752382 hasPublicationYear "2022" @default.
- W4281752382 type Work @default.
- W4281752382 citedByCount "8" @default.
- W4281752382 countsByYear W42817523822022 @default.
- W4281752382 countsByYear W42817523822023 @default.
- W4281752382 crossrefType "journal-article" @default.
- W4281752382 hasAuthorship W4281752382A5001238300 @default.
- W4281752382 hasAuthorship W4281752382A5007177259 @default.
- W4281752382 hasAuthorship W4281752382A5014320610 @default.
- W4281752382 hasAuthorship W4281752382A5022645708 @default.
- W4281752382 hasAuthorship W4281752382A5024838044 @default.
- W4281752382 hasAuthorship W4281752382A5027690715 @default.
- W4281752382 hasAuthorship W4281752382A5028580497 @default.
- W4281752382 hasAuthorship W4281752382A5032292778 @default.
- W4281752382 hasAuthorship W4281752382A5034541075 @default.
- W4281752382 hasAuthorship W4281752382A5045414174 @default.
- W4281752382 hasAuthorship W4281752382A5048365624 @default.
- W4281752382 hasAuthorship W4281752382A5055866859 @default.
- W4281752382 hasAuthorship W4281752382A5064300340 @default.
- W4281752382 hasAuthorship W4281752382A5064797135 @default.
- W4281752382 hasAuthorship W4281752382A5073534215 @default.
- W4281752382 hasAuthorship W4281752382A5073655083 @default.
- W4281752382 hasAuthorship W4281752382A5085086543 @default.
- W4281752382 hasAuthorship W4281752382A5087398563 @default.
- W4281752382 hasAuthorship W4281752382A5087683989 @default.
- W4281752382 hasAuthorship W4281752382A5090368131 @default.
- W4281752382 hasConcept C11413529 @default.
- W4281752382 hasConcept C126322002 @default.
- W4281752382 hasConcept C126838900 @default.
- W4281752382 hasConcept C143409427 @default.
- W4281752382 hasConcept C154945302 @default.
- W4281752382 hasConcept C2778216619 @default.
- W4281752382 hasConcept C2778860756 @default.
- W4281752382 hasConcept C35405484 @default.
- W4281752382 hasConcept C36454342 @default.