Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281754927> ?p ?o ?g. }
- W4281754927 abstract "Predicting the compressive strength of concrete is a complicated process due to the heterogeneous mixture of concrete and high variable materials. Researchers have predicted the compressive strength of concrete for various mixes using machine learning and deep learning models. In this research, compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement is predicted using boosting machine learning (BML) algorithms, namely, Light Gradient Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor (GBR), Adaboost Regressor, and Extreme Gradient Boosting. In these studies, the BML model's performance is evaluated based on prediction accuracy and prediction error rates, i.e., R2, MSE, RMSE, MAE, RMSLE, and MAPE. Additionally, the BML models were further optimised with Random Search algorithms and compared to BML models with default hyperparameters. Comparing all 5 BML models, the GBR model shows the highest prediction accuracy with R2 of 0.96 and lowest model error with MAE and RMSE of 2.73 and 3.40, respectively for test dataset. In conclusion, the GBR model are the best performing BML for predicting the compressive strength of concrete with the highest prediction accuracy, and lowest modelling error." @default.
- W4281754927 created "2022-06-13" @default.
- W4281754927 creator A5010789167 @default.
- W4281754927 creator A5084282976 @default.
- W4281754927 creator A5090950055 @default.
- W4281754927 date "2022-06-09" @default.
- W4281754927 modified "2023-10-04" @default.
- W4281754927 title "Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms" @default.
- W4281754927 cites W1970404859 @default.
- W4281754927 cites W1982839015 @default.
- W4281754927 cites W2052757243 @default.
- W4281754927 cites W2061933243 @default.
- W4281754927 cites W2063629125 @default.
- W4281754927 cites W2085888225 @default.
- W4281754927 cites W2094825736 @default.
- W4281754927 cites W2108246210 @default.
- W4281754927 cites W2523984406 @default.
- W4281754927 cites W2551200462 @default.
- W4281754927 cites W2608710759 @default.
- W4281754927 cites W2736112913 @default.
- W4281754927 cites W2805257321 @default.
- W4281754927 cites W2807464630 @default.
- W4281754927 cites W2810153117 @default.
- W4281754927 cites W2896705958 @default.
- W4281754927 cites W2925700532 @default.
- W4281754927 cites W2940136728 @default.
- W4281754927 cites W2974921125 @default.
- W4281754927 cites W2976353133 @default.
- W4281754927 cites W2977280727 @default.
- W4281754927 cites W2988225712 @default.
- W4281754927 cites W3004198002 @default.
- W4281754927 cites W3006293007 @default.
- W4281754927 cites W3008008902 @default.
- W4281754927 cites W3008826031 @default.
- W4281754927 cites W3009211770 @default.
- W4281754927 cites W3012052663 @default.
- W4281754927 cites W3016453002 @default.
- W4281754927 cites W3025899564 @default.
- W4281754927 cites W3032811227 @default.
- W4281754927 cites W3037485026 @default.
- W4281754927 cites W3038033549 @default.
- W4281754927 cites W3038415525 @default.
- W4281754927 cites W3043160233 @default.
- W4281754927 cites W3046169907 @default.
- W4281754927 cites W3087763244 @default.
- W4281754927 cites W3087991416 @default.
- W4281754927 cites W3089129077 @default.
- W4281754927 cites W3089246515 @default.
- W4281754927 cites W3092287678 @default.
- W4281754927 cites W3092657053 @default.
- W4281754927 cites W3093895805 @default.
- W4281754927 cites W3094948551 @default.
- W4281754927 cites W3095429034 @default.
- W4281754927 cites W3097229427 @default.
- W4281754927 cites W3097671866 @default.
- W4281754927 cites W3097683692 @default.
- W4281754927 cites W3102476541 @default.
- W4281754927 cites W3104499636 @default.
- W4281754927 cites W3112561745 @default.
- W4281754927 cites W3115867105 @default.
- W4281754927 cites W3117942735 @default.
- W4281754927 cites W3125839038 @default.
- W4281754927 cites W3125850143 @default.
- W4281754927 cites W3126997349 @default.
- W4281754927 cites W3131741435 @default.
- W4281754927 cites W3144142665 @default.
- W4281754927 cites W3150319634 @default.
- W4281754927 cites W3184352363 @default.
- W4281754927 cites W3185551827 @default.
- W4281754927 cites W3187418578 @default.
- W4281754927 cites W3209059351 @default.
- W4281754927 cites W4220684451 @default.
- W4281754927 doi "https://doi.org/10.1038/s41598-022-12890-2" @default.
- W4281754927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35680937" @default.
- W4281754927 hasPublicationYear "2022" @default.
- W4281754927 type Work @default.
- W4281754927 citedByCount "19" @default.
- W4281754927 countsByYear W42817549272022 @default.
- W4281754927 countsByYear W42817549272023 @default.
- W4281754927 crossrefType "journal-article" @default.
- W4281754927 hasAuthorship W4281754927A5010789167 @default.
- W4281754927 hasAuthorship W4281754927A5084282976 @default.
- W4281754927 hasAuthorship W4281754927A5090950055 @default.
- W4281754927 hasBestOaLocation W42817549271 @default.
- W4281754927 hasConcept C105795698 @default.
- W4281754927 hasConcept C11413529 @default.
- W4281754927 hasConcept C119857082 @default.
- W4281754927 hasConcept C12267149 @default.
- W4281754927 hasConcept C139945424 @default.
- W4281754927 hasConcept C141404830 @default.
- W4281754927 hasConcept C154945302 @default.
- W4281754927 hasConcept C159985019 @default.
- W4281754927 hasConcept C169258074 @default.
- W4281754927 hasConcept C192562407 @default.
- W4281754927 hasConcept C30407753 @default.
- W4281754927 hasConcept C33819350 @default.
- W4281754927 hasConcept C33923547 @default.
- W4281754927 hasConcept C41008148 @default.
- W4281754927 hasConcept C45942800 @default.
- W4281754927 hasConcept C46686674 @default.