Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281755292> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4281755292 abstract "Influence maximization (IM) is a combinatorial problem of identifying a subset of nodes called the seed nodes in a network (graph), which when activated, provide a maximal spread of influence in the network for a given diffusion model and a budget for seed set size. IM has numerous applications such as viral marketing, epidemic control, sensor placement and other network-related tasks. However, the uses are limited due to the computational complexity of current algorithms. Recently, learning heuristics for IM have been explored to ease the computational burden. However, there are serious limitations in current approaches such as: (1) IM formulations only consider influence via spread and ignore self activation; (2) scalability to large graphs; (3) generalizability across graph families; (4) low computational efficiency with a large running time to identify seed sets for every test network. In this work, we address each of these limitations through a unique approach that involves (1) formulating a generic IM problem as a Markov decision process that handles both intrinsic and influence activations; (2) employing double Q learning to estimate seed nodes; (3) ensuring scalability via sub-graph based representations; and (4) incorporating generalizability via meta-learning across graph families. Extensive experiments are carried out in various standard networks to validate performance of the proposed Graph Meta Reinforcement learning (GraMeR) framework. The results indicate that GraMeR is multiple orders faster and generic than conventional approaches." @default.
- W4281755292 created "2022-06-13" @default.
- W4281755292 creator A5003778401 @default.
- W4281755292 creator A5050892907 @default.
- W4281755292 creator A5075175819 @default.
- W4281755292 date "2022-05-29" @default.
- W4281755292 modified "2023-10-16" @default.
- W4281755292 title "GraMeR: Graph Meta Reinforcement Learning for Multi-Objective Influence Maximization" @default.
- W4281755292 doi "https://doi.org/10.48550/arxiv.2205.14834" @default.
- W4281755292 hasPublicationYear "2022" @default.
- W4281755292 type Work @default.
- W4281755292 citedByCount "0" @default.
- W4281755292 crossrefType "posted-content" @default.
- W4281755292 hasAuthorship W4281755292A5003778401 @default.
- W4281755292 hasAuthorship W4281755292A5050892907 @default.
- W4281755292 hasAuthorship W4281755292A5075175819 @default.
- W4281755292 hasBestOaLocation W42817552921 @default.
- W4281755292 hasConcept C105795698 @default.
- W4281755292 hasConcept C106189395 @default.
- W4281755292 hasConcept C111919701 @default.
- W4281755292 hasConcept C11413529 @default.
- W4281755292 hasConcept C119857082 @default.
- W4281755292 hasConcept C126255220 @default.
- W4281755292 hasConcept C127705205 @default.
- W4281755292 hasConcept C132525143 @default.
- W4281755292 hasConcept C154945302 @default.
- W4281755292 hasConcept C159886148 @default.
- W4281755292 hasConcept C179799912 @default.
- W4281755292 hasConcept C27158222 @default.
- W4281755292 hasConcept C2776330181 @default.
- W4281755292 hasConcept C33923547 @default.
- W4281755292 hasConcept C41008148 @default.
- W4281755292 hasConcept C48044578 @default.
- W4281755292 hasConcept C77088390 @default.
- W4281755292 hasConcept C80444323 @default.
- W4281755292 hasConcept C97541855 @default.
- W4281755292 hasConceptScore W4281755292C105795698 @default.
- W4281755292 hasConceptScore W4281755292C106189395 @default.
- W4281755292 hasConceptScore W4281755292C111919701 @default.
- W4281755292 hasConceptScore W4281755292C11413529 @default.
- W4281755292 hasConceptScore W4281755292C119857082 @default.
- W4281755292 hasConceptScore W4281755292C126255220 @default.
- W4281755292 hasConceptScore W4281755292C127705205 @default.
- W4281755292 hasConceptScore W4281755292C132525143 @default.
- W4281755292 hasConceptScore W4281755292C154945302 @default.
- W4281755292 hasConceptScore W4281755292C159886148 @default.
- W4281755292 hasConceptScore W4281755292C179799912 @default.
- W4281755292 hasConceptScore W4281755292C27158222 @default.
- W4281755292 hasConceptScore W4281755292C2776330181 @default.
- W4281755292 hasConceptScore W4281755292C33923547 @default.
- W4281755292 hasConceptScore W4281755292C41008148 @default.
- W4281755292 hasConceptScore W4281755292C48044578 @default.
- W4281755292 hasConceptScore W4281755292C77088390 @default.
- W4281755292 hasConceptScore W4281755292C80444323 @default.
- W4281755292 hasConceptScore W4281755292C97541855 @default.
- W4281755292 hasLocation W42817552921 @default.
- W4281755292 hasLocation W42817552922 @default.
- W4281755292 hasOpenAccess W4281755292 @default.
- W4281755292 hasPrimaryLocation W42817552921 @default.
- W4281755292 hasRelatedWork W1984069252 @default.
- W4281755292 hasRelatedWork W1985119984 @default.
- W4281755292 hasRelatedWork W2144629587 @default.
- W4281755292 hasRelatedWork W2619759446 @default.
- W4281755292 hasRelatedWork W2951318392 @default.
- W4281755292 hasRelatedWork W3089834075 @default.
- W4281755292 hasRelatedWork W3102103141 @default.
- W4281755292 hasRelatedWork W3134792445 @default.
- W4281755292 hasRelatedWork W3186668962 @default.
- W4281755292 hasRelatedWork W4319083788 @default.
- W4281755292 isParatext "false" @default.
- W4281755292 isRetracted "false" @default.
- W4281755292 workType "article" @default.