Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281755601> ?p ?o ?g. }
- W4281755601 endingPage "e0269176" @default.
- W4281755601 startingPage "e0269176" @default.
- W4281755601 abstract "The quality of urban public spaces affects the emotional response of users; therefore, the emotional data of users can be used as indices to evaluate the quality of a space. Emotional response can be evaluated to effectively measure public space quality through affective computing and obtain evidence-based support for urban space renewal. We proposed a feasible evaluation method for multi-type urban public spaces based on multiple physiological signals and ensemble learning. We built binary, ternary, and quinary classification models based on participants’ physiological signals and self-reported emotional responses through experiments in eight public spaces of five types. Furthermore, we verified the effectiveness of the model by inputting data collected from two other public spaces. Three observations were made based on the results. First, the highest accuracies of the binary and ternary classification models were 92.59% and 91.07%, respectively. After external validation, the highest accuracies were 80.90% and 65.30%, respectively, which satisfied the preliminary requirements for evaluating the quality of actual urban spaces. However, the quinary classification model could not satisfy the preliminary requirements. Second, the average accuracy of ensemble learning was 7.59% higher than that of single classifiers. Third, reducing the number of physiological signal features and applying the synthetic minority oversampling technique to solve unbalanced data improved the evaluation ability." @default.
- W4281755601 created "2022-06-13" @default.
- W4281755601 creator A5011118787 @default.
- W4281755601 creator A5042560807 @default.
- W4281755601 creator A5088097530 @default.
- W4281755601 date "2022-06-03" @default.
- W4281755601 modified "2023-09-30" @default.
- W4281755601 title "Affective computing of multi-type urban public spaces to analyze emotional quality using ensemble learning-based classification of multi-sensor data" @default.
- W4281755601 cites W109590156 @default.
- W4281755601 cites W1963753144 @default.
- W4281755601 cites W1969135658 @default.
- W4281755601 cites W1975947418 @default.
- W4281755601 cites W1987883197 @default.
- W4281755601 cites W1990412839 @default.
- W4281755601 cites W2001097956 @default.
- W4281755601 cites W2003393830 @default.
- W4281755601 cites W2018195004 @default.
- W4281755601 cites W2023097517 @default.
- W4281755601 cites W2029334490 @default.
- W4281755601 cites W2052431898 @default.
- W4281755601 cites W2061079800 @default.
- W4281755601 cites W2061131717 @default.
- W4281755601 cites W2073511756 @default.
- W4281755601 cites W2074886593 @default.
- W4281755601 cites W2078671978 @default.
- W4281755601 cites W2084164487 @default.
- W4281755601 cites W2094338808 @default.
- W4281755601 cites W2125387256 @default.
- W4281755601 cites W2134423065 @default.
- W4281755601 cites W2146010402 @default.
- W4281755601 cites W2148143831 @default.
- W4281755601 cites W2149186291 @default.
- W4281755601 cites W2153771043 @default.
- W4281755601 cites W2158850683 @default.
- W4281755601 cites W2165113952 @default.
- W4281755601 cites W2167557160 @default.
- W4281755601 cites W2184481998 @default.
- W4281755601 cites W2221908367 @default.
- W4281755601 cites W2245289738 @default.
- W4281755601 cites W2400745442 @default.
- W4281755601 cites W2406890334 @default.
- W4281755601 cites W2547213379 @default.
- W4281755601 cites W2570738295 @default.
- W4281755601 cites W2584561145 @default.
- W4281755601 cites W2617151543 @default.
- W4281755601 cites W2779570509 @default.
- W4281755601 cites W2789802223 @default.
- W4281755601 cites W2808649502 @default.
- W4281755601 cites W2810418809 @default.
- W4281755601 cites W2888949514 @default.
- W4281755601 cites W2894364535 @default.
- W4281755601 cites W2898242330 @default.
- W4281755601 cites W2900877948 @default.
- W4281755601 cites W2904932135 @default.
- W4281755601 cites W2917094047 @default.
- W4281755601 cites W2932628637 @default.
- W4281755601 cites W2997623570 @default.
- W4281755601 cites W3085160563 @default.
- W4281755601 cites W3088514172 @default.
- W4281755601 cites W3101469666 @default.
- W4281755601 cites W3103376724 @default.
- W4281755601 cites W3113061821 @default.
- W4281755601 cites W3127142027 @default.
- W4281755601 cites W3135687123 @default.
- W4281755601 cites W4237900122 @default.
- W4281755601 cites W4240644668 @default.
- W4281755601 cites W4253487878 @default.
- W4281755601 doi "https://doi.org/10.1371/journal.pone.0269176" @default.
- W4281755601 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35657805" @default.
- W4281755601 hasPublicationYear "2022" @default.
- W4281755601 type Work @default.
- W4281755601 citedByCount "0" @default.
- W4281755601 crossrefType "journal-article" @default.
- W4281755601 hasAuthorship W4281755601A5011118787 @default.
- W4281755601 hasAuthorship W4281755601A5042560807 @default.
- W4281755601 hasAuthorship W4281755601A5088097530 @default.
- W4281755601 hasBestOaLocation W42817556011 @default.
- W4281755601 hasConcept C111472728 @default.
- W4281755601 hasConcept C111919701 @default.
- W4281755601 hasConcept C119857082 @default.
- W4281755601 hasConcept C12267149 @default.
- W4281755601 hasConcept C124101348 @default.
- W4281755601 hasConcept C138885662 @default.
- W4281755601 hasConcept C153180895 @default.
- W4281755601 hasConcept C154945302 @default.
- W4281755601 hasConcept C159985019 @default.
- W4281755601 hasConcept C192562407 @default.
- W4281755601 hasConcept C197323446 @default.
- W4281755601 hasConcept C2776257435 @default.
- W4281755601 hasConcept C2778572836 @default.
- W4281755601 hasConcept C2779530757 @default.
- W4281755601 hasConcept C2780026712 @default.
- W4281755601 hasConcept C2781139463 @default.
- W4281755601 hasConcept C31258907 @default.
- W4281755601 hasConcept C33923547 @default.
- W4281755601 hasConcept C41008148 @default.
- W4281755601 hasConcept C45942800 @default.
- W4281755601 hasConcept C48372109 @default.