Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281761661> ?p ?o ?g. }
- W4281761661 endingPage "6612" @default.
- W4281761661 startingPage "6612" @default.
- W4281761661 abstract "Machine learning (ML) models have been widely used to predict streamflow. However, limited by the high dimensionality and training difficulty, high-resolution gridded climate datasets have rarely been used to build ML-based streamflow models. In this study, we developed a general modeling framework that applied empirical orthogonal function (EOF) analysis to extract information from gridded climate datasets for building ML-based streamflow prediction models. Four classic ML methods, namely, support vector regression (SVR), multilayer perceptron (MLP), long short-term memory (LSTM) and gradient boosting regression tree (GBRT), were incorporated into the modeling framework for performance evaluation and comparison. We applied the modeling framework to the upper Heihe River Basin (UHRB) to simulate a historical 22-year period of daily streamflow. The modeling results demonstrated that EOF analysis could extract the spatial information from the gridded climate datasets for streamflow prediction. All four selected ML models captured the temporal variations in the streamflow and reproduced the daily hydrographs. In particular, the GBRT model outperformed the other three models in terms of streamflow prediction accuracy in the testing period. The R2, RMSE, MAE, NSE and PBIAS were equal to 0.68, 9.40 m3/s, 5.18 m3/s, 0.68 and −0.03 for the daily streamflow in the Taolai River Watershed of the UHRB, respectively. Additionally, the LSTM method could provide physically based hydrological explanations of climate predicators in streamflow generation. Therefore, this study demonstrated the unique capability and functionality of incorporating EOF analysis into ML models for streamflow prediction, which could make better use of the readily available gridded climate data in hydrological simulations." @default.
- W4281761661 created "2022-06-13" @default.
- W4281761661 creator A5027904162 @default.
- W4281761661 creator A5040128930 @default.
- W4281761661 creator A5052134746 @default.
- W4281761661 date "2022-05-28" @default.
- W4281761661 modified "2023-10-14" @default.
- W4281761661 title "Incorporating Empirical Orthogonal Function Analysis into Machine Learning Models for Streamflow Prediction" @default.
- W4281761661 cites W1678356000 @default.
- W4281761661 cites W1689711448 @default.
- W4281761661 cites W1982590625 @default.
- W4281761661 cites W1986140246 @default.
- W4281761661 cites W1987345571 @default.
- W4281761661 cites W1997715835 @default.
- W4281761661 cites W2005403210 @default.
- W4281761661 cites W2008427312 @default.
- W4281761661 cites W2009636568 @default.
- W4281761661 cites W2014731620 @default.
- W4281761661 cites W2024523255 @default.
- W4281761661 cites W2028003655 @default.
- W4281761661 cites W2029228762 @default.
- W4281761661 cites W2033904036 @default.
- W4281761661 cites W2034159055 @default.
- W4281761661 cites W2035802397 @default.
- W4281761661 cites W2037931255 @default.
- W4281761661 cites W2041469766 @default.
- W4281761661 cites W2048090830 @default.
- W4281761661 cites W2056950965 @default.
- W4281761661 cites W2057018326 @default.
- W4281761661 cites W2058998445 @default.
- W4281761661 cites W2060954725 @default.
- W4281761661 cites W2064675550 @default.
- W4281761661 cites W2066124661 @default.
- W4281761661 cites W2069281202 @default.
- W4281761661 cites W2079735306 @default.
- W4281761661 cites W2094331444 @default.
- W4281761661 cites W2098262919 @default.
- W4281761661 cites W2099738406 @default.
- W4281761661 cites W2131774270 @default.
- W4281761661 cites W2228116959 @default.
- W4281761661 cites W2286565014 @default.
- W4281761661 cites W2295650127 @default.
- W4281761661 cites W2316522976 @default.
- W4281761661 cites W2557198744 @default.
- W4281761661 cites W2765692959 @default.
- W4281761661 cites W2792655993 @default.
- W4281761661 cites W2800819102 @default.
- W4281761661 cites W2802436364 @default.
- W4281761661 cites W2893656991 @default.
- W4281761661 cites W2902784344 @default.
- W4281761661 cites W2940200036 @default.
- W4281761661 cites W2950709357 @default.
- W4281761661 cites W2952482886 @default.
- W4281761661 cites W2966224244 @default.
- W4281761661 cites W2969539783 @default.
- W4281761661 cites W2983352457 @default.
- W4281761661 cites W2991306453 @default.
- W4281761661 cites W3007821321 @default.
- W4281761661 cites W3045905036 @default.
- W4281761661 cites W3086210877 @default.
- W4281761661 cites W3107128669 @default.
- W4281761661 doi "https://doi.org/10.3390/su14116612" @default.
- W4281761661 hasPublicationYear "2022" @default.
- W4281761661 type Work @default.
- W4281761661 citedByCount "1" @default.
- W4281761661 countsByYear W42817616612023 @default.
- W4281761661 crossrefType "journal-article" @default.
- W4281761661 hasAuthorship W4281761661A5027904162 @default.
- W4281761661 hasAuthorship W4281761661A5040128930 @default.
- W4281761661 hasAuthorship W4281761661A5052134746 @default.
- W4281761661 hasBestOaLocation W42817616611 @default.
- W4281761661 hasConcept C105795698 @default.
- W4281761661 hasConcept C119857082 @default.
- W4281761661 hasConcept C126645576 @default.
- W4281761661 hasConcept C127313418 @default.
- W4281761661 hasConcept C13724139 @default.
- W4281761661 hasConcept C179717631 @default.
- W4281761661 hasConcept C183195422 @default.
- W4281761661 hasConcept C205649164 @default.
- W4281761661 hasConcept C33923547 @default.
- W4281761661 hasConcept C39432304 @default.
- W4281761661 hasConcept C41008148 @default.
- W4281761661 hasConcept C45804977 @default.
- W4281761661 hasConcept C49204034 @default.
- W4281761661 hasConcept C50644808 @default.
- W4281761661 hasConcept C53739315 @default.
- W4281761661 hasConcept C58640448 @default.
- W4281761661 hasConcept C83546350 @default.
- W4281761661 hasConceptScore W4281761661C105795698 @default.
- W4281761661 hasConceptScore W4281761661C119857082 @default.
- W4281761661 hasConceptScore W4281761661C126645576 @default.
- W4281761661 hasConceptScore W4281761661C127313418 @default.
- W4281761661 hasConceptScore W4281761661C13724139 @default.
- W4281761661 hasConceptScore W4281761661C179717631 @default.
- W4281761661 hasConceptScore W4281761661C183195422 @default.
- W4281761661 hasConceptScore W4281761661C205649164 @default.
- W4281761661 hasConceptScore W4281761661C33923547 @default.
- W4281761661 hasConceptScore W4281761661C39432304 @default.