Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281763832> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4281763832 abstract "Abstract Despite advances in method development for multiple sequence alignment over the last several decades, the alignment of datasets exhibiting substantial sequence length heterogeneity, especially when the input sequences include very short sequences (either as a result of sequencing technologies or of large deletions during evolution) remains an inadequately solved problem. We present HMMerge, a method to compute an alignment of datasets exhibiting high sequence length heterogeneity, or to add short sequences into a given “backbone” alignment. HMMerge builds on the technique from its predecessor alignment methods, UPP and WITCH, which build an ensemble of HMMs for the backbone alignment and add the remaining sequences into the backbone alignment using the ensemble. HMMerge differs from UPP and WITCH by building a new HMM for each query sequence: it uses a novel ensemble approach to combine the HMMs, each weighted by the probability of generating the query sequence, into a single HMM. Then it applies the Viterbi algorithm to add the query sequence into the backbone alignment. We show that using this “merged” HMM provides better accuracy than the current approach in UPP and matches or improves on WITCH for adding short sequences into backbone alignments. HMMerge is freely available at https://github.com/MinhyukPark/HMMerge ." @default.
- W4281763832 created "2022-06-13" @default.
- W4281763832 creator A5032411541 @default.
- W4281763832 creator A5069222630 @default.
- W4281763832 date "2022-05-30" @default.
- W4281763832 modified "2023-10-14" @default.
- W4281763832 title "HMMerge: an Ensemble Method for Improving Multiple Sequence Alignment" @default.
- W4281763832 cites W1531430623 @default.
- W4281763832 cites W1966399595 @default.
- W4281763832 cites W2007668764 @default.
- W4281763832 cites W2038492487 @default.
- W4281763832 cites W2056251063 @default.
- W4281763832 cites W2061680337 @default.
- W4281763832 cites W2111647009 @default.
- W4281763832 cites W2127322768 @default.
- W4281763832 cites W2127774996 @default.
- W4281763832 cites W2132926880 @default.
- W4281763832 cites W2138122982 @default.
- W4281763832 cites W2141052558 @default.
- W4281763832 cites W2154598603 @default.
- W4281763832 cites W2159638180 @default.
- W4281763832 cites W2904030683 @default.
- W4281763832 cites W2991142785 @default.
- W4281763832 cites W3044581192 @default.
- W4281763832 cites W3109134151 @default.
- W4281763832 cites W4280524234 @default.
- W4281763832 doi "https://doi.org/10.1101/2022.05.29.493880" @default.
- W4281763832 hasPublicationYear "2022" @default.
- W4281763832 type Work @default.
- W4281763832 citedByCount "2" @default.
- W4281763832 countsByYear W42817638322022 @default.
- W4281763832 countsByYear W42817638322023 @default.
- W4281763832 crossrefType "posted-content" @default.
- W4281763832 hasAuthorship W4281763832A5032411541 @default.
- W4281763832 hasAuthorship W4281763832A5069222630 @default.
- W4281763832 hasBestOaLocation W42817638321 @default.
- W4281763832 hasConcept C104317684 @default.
- W4281763832 hasConcept C11413529 @default.
- W4281763832 hasConcept C153180895 @default.
- W4281763832 hasConcept C154945302 @default.
- W4281763832 hasConcept C167625842 @default.
- W4281763832 hasConcept C180384323 @default.
- W4281763832 hasConcept C23224414 @default.
- W4281763832 hasConcept C2778112365 @default.
- W4281763832 hasConcept C41008148 @default.
- W4281763832 hasConcept C45484198 @default.
- W4281763832 hasConcept C4668613 @default.
- W4281763832 hasConcept C54355233 @default.
- W4281763832 hasConcept C60582962 @default.
- W4281763832 hasConcept C86803240 @default.
- W4281763832 hasConcept C88031987 @default.
- W4281763832 hasConceptScore W4281763832C104317684 @default.
- W4281763832 hasConceptScore W4281763832C11413529 @default.
- W4281763832 hasConceptScore W4281763832C153180895 @default.
- W4281763832 hasConceptScore W4281763832C154945302 @default.
- W4281763832 hasConceptScore W4281763832C167625842 @default.
- W4281763832 hasConceptScore W4281763832C180384323 @default.
- W4281763832 hasConceptScore W4281763832C23224414 @default.
- W4281763832 hasConceptScore W4281763832C2778112365 @default.
- W4281763832 hasConceptScore W4281763832C41008148 @default.
- W4281763832 hasConceptScore W4281763832C45484198 @default.
- W4281763832 hasConceptScore W4281763832C4668613 @default.
- W4281763832 hasConceptScore W4281763832C54355233 @default.
- W4281763832 hasConceptScore W4281763832C60582962 @default.
- W4281763832 hasConceptScore W4281763832C86803240 @default.
- W4281763832 hasConceptScore W4281763832C88031987 @default.
- W4281763832 hasLocation W42817638321 @default.
- W4281763832 hasOpenAccess W4281763832 @default.
- W4281763832 hasPrimaryLocation W42817638321 @default.
- W4281763832 hasRelatedWork W1591831971 @default.
- W4281763832 hasRelatedWork W1977143711 @default.
- W4281763832 hasRelatedWork W2003893195 @default.
- W4281763832 hasRelatedWork W2035698531 @default.
- W4281763832 hasRelatedWork W2106241755 @default.
- W4281763832 hasRelatedWork W2166718648 @default.
- W4281763832 hasRelatedWork W2505756865 @default.
- W4281763832 hasRelatedWork W3000366369 @default.
- W4281763832 hasRelatedWork W40413237 @default.
- W4281763832 hasRelatedWork W88386512 @default.
- W4281763832 isParatext "false" @default.
- W4281763832 isRetracted "false" @default.
- W4281763832 workType "article" @default.