Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281773160> ?p ?o ?g. }
- W4281773160 endingPage "143" @default.
- W4281773160 startingPage "133" @default.
- W4281773160 abstract "Microseismic monitoring is widely used to analyze the locations and growth directions of fractures formed at sites of hydraulic fracturing treatment and CO2 geologic sequestration. Because moment tensors can provide focal mechanisms, moment tensor inversion has received considerable attention in microseismic monitoring; the real-time processing of moment tensor inversion is important for rapid decision-making. Pre-trained machine learning (ML) models can make nearly instantaneous predictions in the application stage and thus present an attractive alternative to real-time processing. However, prior information regarding the velocity model at the target site is a prerequisite for generating the dataset used to train the ML model that is applied in moment tensor inversion. In addition, it is difficult to create the training dataset because it requires three-dimensional numerical modelling when the velocity model is complex; numerous simulations must be executed for sources with various locations and moment tensors. To overcome these limitations, we applied the domain adaptation technique to the convolutional neural network (CNN)-based moment tensor inversion method, which uses peak amplitudes and arrival times of P- and S-waves as input features. The CNN model was pre-trained with the dataset generated from a homogeneous velocity model. Then, in the domain adaptation stage, the pre-trained model was fine-tuned along with the target dataset. To validate the performance of the domain adaptation, moment tensors from both horizontal and tilted three-layer models were predicted. In each case, the domain-adapted model performance was similar to the performances of the CNN-based models that had been trained using the dataset generated with the exact target velocity models." @default.
- W4281773160 created "2022-06-13" @default.
- W4281773160 creator A5016273431 @default.
- W4281773160 creator A5030820723 @default.
- W4281773160 creator A5063529811 @default.
- W4281773160 creator A5075006060 @default.
- W4281773160 date "2022-06-10" @default.
- W4281773160 modified "2023-09-27" @default.
- W4281773160 title "Convolutional neural network-based moment tensor inversion using domain adaptation for microseismicity monitoring" @default.
- W4281773160 cites W1499489763 @default.
- W4281773160 cites W1848067314 @default.
- W4281773160 cites W2012574110 @default.
- W4281773160 cites W2075617619 @default.
- W4281773160 cites W2103897300 @default.
- W4281773160 cites W2145996801 @default.
- W4281773160 cites W2286659142 @default.
- W4281773160 cites W2338095465 @default.
- W4281773160 cites W2552128038 @default.
- W4281773160 cites W2605979352 @default.
- W4281773160 cites W2758816065 @default.
- W4281773160 cites W2786808285 @default.
- W4281773160 cites W2790095368 @default.
- W4281773160 cites W2890545378 @default.
- W4281773160 cites W2923354344 @default.
- W4281773160 cites W2947161164 @default.
- W4281773160 cites W2950752056 @default.
- W4281773160 cites W2953470902 @default.
- W4281773160 cites W2979406847 @default.
- W4281773160 cites W3026683836 @default.
- W4281773160 cites W3046859104 @default.
- W4281773160 cites W3088701322 @default.
- W4281773160 cites W3090082643 @default.
- W4281773160 cites W3196266918 @default.
- W4281773160 doi "https://doi.org/10.1080/08123985.2022.2086798" @default.
- W4281773160 hasPublicationYear "2022" @default.
- W4281773160 type Work @default.
- W4281773160 citedByCount "0" @default.
- W4281773160 crossrefType "journal-article" @default.
- W4281773160 hasAuthorship W4281773160A5016273431 @default.
- W4281773160 hasAuthorship W4281773160A5030820723 @default.
- W4281773160 hasAuthorship W4281773160A5063529811 @default.
- W4281773160 hasAuthorship W4281773160A5075006060 @default.
- W4281773160 hasConcept C103824480 @default.
- W4281773160 hasConcept C111368507 @default.
- W4281773160 hasConcept C11413529 @default.
- W4281773160 hasConcept C121332964 @default.
- W4281773160 hasConcept C127313418 @default.
- W4281773160 hasConcept C153180895 @default.
- W4281773160 hasConcept C154945302 @default.
- W4281773160 hasConcept C155281189 @default.
- W4281773160 hasConcept C165205528 @default.
- W4281773160 hasConcept C179254644 @default.
- W4281773160 hasConcept C1893757 @default.
- W4281773160 hasConcept C204366326 @default.
- W4281773160 hasConcept C2524010 @default.
- W4281773160 hasConcept C2994172659 @default.
- W4281773160 hasConcept C31972630 @default.
- W4281773160 hasConcept C33923547 @default.
- W4281773160 hasConcept C41008148 @default.
- W4281773160 hasConcept C7266685 @default.
- W4281773160 hasConcept C74650414 @default.
- W4281773160 hasConcept C77928131 @default.
- W4281773160 hasConcept C8058405 @default.
- W4281773160 hasConcept C81363708 @default.
- W4281773160 hasConceptScore W4281773160C103824480 @default.
- W4281773160 hasConceptScore W4281773160C111368507 @default.
- W4281773160 hasConceptScore W4281773160C11413529 @default.
- W4281773160 hasConceptScore W4281773160C121332964 @default.
- W4281773160 hasConceptScore W4281773160C127313418 @default.
- W4281773160 hasConceptScore W4281773160C153180895 @default.
- W4281773160 hasConceptScore W4281773160C154945302 @default.
- W4281773160 hasConceptScore W4281773160C155281189 @default.
- W4281773160 hasConceptScore W4281773160C165205528 @default.
- W4281773160 hasConceptScore W4281773160C179254644 @default.
- W4281773160 hasConceptScore W4281773160C1893757 @default.
- W4281773160 hasConceptScore W4281773160C204366326 @default.
- W4281773160 hasConceptScore W4281773160C2524010 @default.
- W4281773160 hasConceptScore W4281773160C2994172659 @default.
- W4281773160 hasConceptScore W4281773160C31972630 @default.
- W4281773160 hasConceptScore W4281773160C33923547 @default.
- W4281773160 hasConceptScore W4281773160C41008148 @default.
- W4281773160 hasConceptScore W4281773160C7266685 @default.
- W4281773160 hasConceptScore W4281773160C74650414 @default.
- W4281773160 hasConceptScore W4281773160C77928131 @default.
- W4281773160 hasConceptScore W4281773160C8058405 @default.
- W4281773160 hasConceptScore W4281773160C81363708 @default.
- W4281773160 hasFunder F4320321142 @default.
- W4281773160 hasFunder F4320322097 @default.
- W4281773160 hasFunder F4320322120 @default.
- W4281773160 hasFunder F4320335199 @default.
- W4281773160 hasIssue "2" @default.
- W4281773160 hasLocation W42817731601 @default.
- W4281773160 hasOpenAccess W4281773160 @default.
- W4281773160 hasPrimaryLocation W42817731601 @default.
- W4281773160 hasRelatedWork W2175746458 @default.
- W4281773160 hasRelatedWork W2312983743 @default.
- W4281773160 hasRelatedWork W2732542196 @default.
- W4281773160 hasRelatedWork W2738221750 @default.