Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281774890> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4281774890 abstract "The detection and localization of ships is important and must be accurate and rapid. The Synthetic Aperture Radar (SAR) is optimal for ship detection. Generally, Constant False Alarm Rate (CFAR) algorithms are used to detect ships from a SAR image on the base of satellite remote sensing imaging. However, due to the rapid development of technology, the remote sensing data have shown the features of big-data. The analyze of big-data improves the accuracy and speed of the ship detection. Therefore, Deep Learning (DL) is recommended and exactly the Convolutional Neural Network (CNN) model has greatly improved the static image recognition performance. In this paper, to improve the accuracy and speed of the ship detection from SAR image, we introduce the CFAR-CNN detector. First, after modeling the sea clutter by the Generalized Gamma (GΓ) distribution, a CFAR global detector is applied. Then, to improve the accuracy of the previous results, a CNN local detector is applied. To this end, a real dataset is used to obtain the optimal CNN model. We have shown that this detector is rapid and tends toward ideality." @default.
- W4281774890 created "2022-06-13" @default.
- W4281774890 creator A5010610508 @default.
- W4281774890 creator A5034531140 @default.
- W4281774890 creator A5055639846 @default.
- W4281774890 date "2022-05-08" @default.
- W4281774890 modified "2023-09-30" @default.
- W4281774890 title "CFAR-CNN Detector of Ships from SAR Image Using Generalized Gamma Distribution and Real Dataset" @default.
- W4281774890 cites W1965709756 @default.
- W4281774890 cites W2009061394 @default.
- W4281774890 cites W2089962257 @default.
- W4281774890 cites W2120066054 @default.
- W4281774890 cites W2129238121 @default.
- W4281774890 cites W2138594371 @default.
- W4281774890 cites W2148411278 @default.
- W4281774890 cites W2167220279 @default.
- W4281774890 cites W2535830198 @default.
- W4281774890 cites W2547578938 @default.
- W4281774890 cites W2565960758 @default.
- W4281774890 cites W2632026579 @default.
- W4281774890 cites W2808374747 @default.
- W4281774890 doi "https://doi.org/10.1109/ispa54004.2022.9786348" @default.
- W4281774890 hasPublicationYear "2022" @default.
- W4281774890 type Work @default.
- W4281774890 citedByCount "4" @default.
- W4281774890 countsByYear W42817748902023 @default.
- W4281774890 crossrefType "proceedings-article" @default.
- W4281774890 hasAuthorship W4281774890A5010610508 @default.
- W4281774890 hasAuthorship W4281774890A5034531140 @default.
- W4281774890 hasAuthorship W4281774890A5055639846 @default.
- W4281774890 hasConcept C108583219 @default.
- W4281774890 hasConcept C127313418 @default.
- W4281774890 hasConcept C132094186 @default.
- W4281774890 hasConcept C153180895 @default.
- W4281774890 hasConcept C154945302 @default.
- W4281774890 hasConcept C2776151529 @default.
- W4281774890 hasConcept C31972630 @default.
- W4281774890 hasConcept C41008148 @default.
- W4281774890 hasConcept C554190296 @default.
- W4281774890 hasConcept C62649853 @default.
- W4281774890 hasConcept C76155785 @default.
- W4281774890 hasConcept C77052588 @default.
- W4281774890 hasConcept C81363708 @default.
- W4281774890 hasConcept C87360688 @default.
- W4281774890 hasConcept C94915269 @default.
- W4281774890 hasConceptScore W4281774890C108583219 @default.
- W4281774890 hasConceptScore W4281774890C127313418 @default.
- W4281774890 hasConceptScore W4281774890C132094186 @default.
- W4281774890 hasConceptScore W4281774890C153180895 @default.
- W4281774890 hasConceptScore W4281774890C154945302 @default.
- W4281774890 hasConceptScore W4281774890C2776151529 @default.
- W4281774890 hasConceptScore W4281774890C31972630 @default.
- W4281774890 hasConceptScore W4281774890C41008148 @default.
- W4281774890 hasConceptScore W4281774890C554190296 @default.
- W4281774890 hasConceptScore W4281774890C62649853 @default.
- W4281774890 hasConceptScore W4281774890C76155785 @default.
- W4281774890 hasConceptScore W4281774890C77052588 @default.
- W4281774890 hasConceptScore W4281774890C81363708 @default.
- W4281774890 hasConceptScore W4281774890C87360688 @default.
- W4281774890 hasConceptScore W4281774890C94915269 @default.
- W4281774890 hasLocation W42817748901 @default.
- W4281774890 hasOpenAccess W4281774890 @default.
- W4281774890 hasPrimaryLocation W42817748901 @default.
- W4281774890 hasRelatedWork W1985570993 @default.
- W4281774890 hasRelatedWork W2006749020 @default.
- W4281774890 hasRelatedWork W2144175433 @default.
- W4281774890 hasRelatedWork W2161193411 @default.
- W4281774890 hasRelatedWork W2353511160 @default.
- W4281774890 hasRelatedWork W2355250096 @default.
- W4281774890 hasRelatedWork W2386884800 @default.
- W4281774890 hasRelatedWork W2762723134 @default.
- W4281774890 hasRelatedWork W4311401716 @default.
- W4281774890 hasRelatedWork W3142490657 @default.
- W4281774890 isParatext "false" @default.
- W4281774890 isRetracted "false" @default.
- W4281774890 workType "article" @default.