Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281775660> ?p ?o ?g. }
- W4281775660 endingPage "100074" @default.
- W4281775660 startingPage "100074" @default.
- W4281775660 abstract "The future of agriculture faces a threat from a changing climate and a rapidly growing population. This has put enormous pressure on water and land resources as more food is expected from less inputs. Advancement in smart agriculture through the use of the Internet of Things and improvement in computational power has enabled extensive data collection from agricultural ecosystems. This review introduces model predictive control and describes its application in precision irrigation. An overview of the application of data-driven modelling and model predictive control for precision irrigation management is presented. Model predictive control has been applied in irrigation canal control, irrigation scheduling, stem water potential regulation, soil moisture regulation and prediction of plant disturbances. Finally, the benefits, challenges, and future perspectives of data-driven model predictive control in the context of irrigation scheduling are presented. This review provides useful information to researchers and agriculturalists to appreciate and use data collected in real-time to learn the dynamics of agricultural systems." @default.
- W4281775660 created "2022-06-13" @default.
- W4281775660 creator A5026529702 @default.
- W4281775660 creator A5047880314 @default.
- W4281775660 creator A5064339852 @default.
- W4281775660 date "2023-02-01" @default.
- W4281775660 modified "2023-10-01" @default.
- W4281775660 title "Data-driven model predictive control for precision irrigation management" @default.
- W4281775660 cites W1966316609 @default.
- W4281775660 cites W1968047197 @default.
- W4281775660 cites W1979093639 @default.
- W4281775660 cites W1980900857 @default.
- W4281775660 cites W2024874992 @default.
- W4281775660 cites W2026104641 @default.
- W4281775660 cites W2027701333 @default.
- W4281775660 cites W2033193296 @default.
- W4281775660 cites W2040085420 @default.
- W4281775660 cites W2085655078 @default.
- W4281775660 cites W2090503001 @default.
- W4281775660 cites W2150506037 @default.
- W4281775660 cites W2158068389 @default.
- W4281775660 cites W2165449829 @default.
- W4281775660 cites W2218314461 @default.
- W4281775660 cites W2275511345 @default.
- W4281775660 cites W2386610936 @default.
- W4281775660 cites W2467357393 @default.
- W4281775660 cites W2497183556 @default.
- W4281775660 cites W2547705443 @default.
- W4281775660 cites W2551203847 @default.
- W4281775660 cites W2588452742 @default.
- W4281775660 cites W2753565741 @default.
- W4281775660 cites W2765568149 @default.
- W4281775660 cites W2807301194 @default.
- W4281775660 cites W2808390209 @default.
- W4281775660 cites W2890555244 @default.
- W4281775660 cites W2897222118 @default.
- W4281775660 cites W2918179498 @default.
- W4281775660 cites W2951761883 @default.
- W4281775660 cites W2979202016 @default.
- W4281775660 cites W2990378819 @default.
- W4281775660 cites W3006385006 @default.
- W4281775660 cites W3022538632 @default.
- W4281775660 cites W3024734364 @default.
- W4281775660 cites W3090789943 @default.
- W4281775660 cites W3121664573 @default.
- W4281775660 cites W3161326370 @default.
- W4281775660 cites W3165446381 @default.
- W4281775660 cites W3168089122 @default.
- W4281775660 cites W3180403646 @default.
- W4281775660 cites W3197305267 @default.
- W4281775660 cites W3199801153 @default.
- W4281775660 cites W3203094643 @default.
- W4281775660 cites W3207513504 @default.
- W4281775660 cites W3208919649 @default.
- W4281775660 cites W4200017073 @default.
- W4281775660 cites W4210480843 @default.
- W4281775660 cites W4246840991 @default.
- W4281775660 doi "https://doi.org/10.1016/j.atech.2022.100074" @default.
- W4281775660 hasPublicationYear "2023" @default.
- W4281775660 type Work @default.
- W4281775660 citedByCount "7" @default.
- W4281775660 countsByYear W42817756602022 @default.
- W4281775660 countsByYear W42817756602023 @default.
- W4281775660 crossrefType "journal-article" @default.
- W4281775660 hasAuthorship W4281775660A5026529702 @default.
- W4281775660 hasAuthorship W4281775660A5047880314 @default.
- W4281775660 hasAuthorship W4281775660A5064339852 @default.
- W4281775660 hasBestOaLocation W42817756601 @default.
- W4281775660 hasConcept C111472728 @default.
- W4281775660 hasConcept C112077630 @default.
- W4281775660 hasConcept C118518473 @default.
- W4281775660 hasConcept C119857082 @default.
- W4281775660 hasConcept C120217122 @default.
- W4281775660 hasConcept C127413603 @default.
- W4281775660 hasConcept C138885662 @default.
- W4281775660 hasConcept C154945302 @default.
- W4281775660 hasConcept C166957645 @default.
- W4281775660 hasConcept C172205157 @default.
- W4281775660 hasConcept C18903297 @default.
- W4281775660 hasConcept C205649164 @default.
- W4281775660 hasConcept C2775924081 @default.
- W4281775660 hasConcept C2777589951 @default.
- W4281775660 hasConcept C2778136018 @default.
- W4281775660 hasConcept C2779343474 @default.
- W4281775660 hasConcept C41008148 @default.
- W4281775660 hasConcept C45804977 @default.
- W4281775660 hasConcept C86803240 @default.
- W4281775660 hasConcept C88463610 @default.
- W4281775660 hasConcept C88862950 @default.
- W4281775660 hasConceptScore W4281775660C111472728 @default.
- W4281775660 hasConceptScore W4281775660C112077630 @default.
- W4281775660 hasConceptScore W4281775660C118518473 @default.
- W4281775660 hasConceptScore W4281775660C119857082 @default.
- W4281775660 hasConceptScore W4281775660C120217122 @default.
- W4281775660 hasConceptScore W4281775660C127413603 @default.
- W4281775660 hasConceptScore W4281775660C138885662 @default.
- W4281775660 hasConceptScore W4281775660C154945302 @default.
- W4281775660 hasConceptScore W4281775660C166957645 @default.