Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281777248> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4281777248 endingPage "149" @default.
- W4281777248 startingPage "124" @default.
- W4281777248 abstract "This paper applies Multi-Dimensional Analysis (MDA) to a corpus of English tweets to uncover the most common patterns of linguistic variation. MDA is a commonly applied method in corpus linguistics for the analysis of functional and/or stylistic variation in a particular language variety. Notably, MDA is an approach aimed at identifying and interpreting the frequent patterns of co-occurring linguistic features across a corpus, such as a corpus of spoken and written English registers (Biber, 1988). Traditionally, MDA is based on a factor analysis of the relative frequencies of numerous grammatical features measured across numerous texts drawn from that variety of language to identify a series of underlying dimensions of linguistic variation. Despite its popularity and utility, traditional MDA has an important limitation – it can only be used to analyse texts that are long enough to allow for the relative frequencies of many grammatical forms to be estimated accurately. If the texts under analysis are too short, then few forms can be expected to occur sufficiently frequently for their relative frequency to be accurately estimated. Tweets are characteristically short texts, meaning that traditional MDA cannot be used in the present research. To overcome this problem, this paper introduces a short-text version of MDA and applies it to a corpus of English tweets. Specifically, rather than measure the relative frequencies of forms in each tweet, the approach analyses their occurrence. This binary dataset is then aggregated using Multiple Correspondence Analysis (MCA), which is used much like factor analysis in traditional MDA – to return a series of dimensions that represent the most common patterns of linguistic variation in the dataset. After controlling for text length in the first dimension, four subsequent dimensions are interpreted. The results suggest that there is a great deal of linguistic variation on Twitter. Notably, the results show that Twitter is commonly used for self-commodification, as people manage their identities, engaging in practices of self-branding through stance-taking, self-reporting, promotion and persuasion, as well as broadcasting their message beyond their followership, distributing news and expressing opposition, and this often occurs in order to attract attention. Additionally, the results show that interaction is common, suggesting that Twitter is also used for social and interpersonal gain." @default.
- W4281777248 created "2022-06-13" @default.
- W4281777248 creator A5059881732 @default.
- W4281777248 date "2022-05-01" @default.
- W4281777248 modified "2023-09-26" @default.
- W4281777248 title "A Multi-Dimensional Analysis of English tweets" @default.
- W4281777248 cites W1496632887 @default.
- W4281777248 cites W2055255346 @default.
- W4281777248 cites W2093585241 @default.
- W4281777248 cites W2148259819 @default.
- W4281777248 cites W2150907923 @default.
- W4281777248 cites W2216819074 @default.
- W4281777248 cites W2485015825 @default.
- W4281777248 cites W2496705332 @default.
- W4281777248 cites W2740953594 @default.
- W4281777248 cites W2769000698 @default.
- W4281777248 cites W2887143167 @default.
- W4281777248 cites W2894950577 @default.
- W4281777248 cites W2947770855 @default.
- W4281777248 cites W2975760178 @default.
- W4281777248 cites W3150156619 @default.
- W4281777248 cites W411382560 @default.
- W4281777248 cites W4250089123 @default.
- W4281777248 cites W4253404233 @default.
- W4281777248 cites W4297948353 @default.
- W4281777248 cites W46957478 @default.
- W4281777248 doi "https://doi.org/10.1177/09639470221090369" @default.
- W4281777248 hasPublicationYear "2022" @default.
- W4281777248 type Work @default.
- W4281777248 citedByCount "4" @default.
- W4281777248 countsByYear W42817772482022 @default.
- W4281777248 crossrefType "journal-article" @default.
- W4281777248 hasAuthorship W4281777248A5059881732 @default.
- W4281777248 hasBestOaLocation W42817772481 @default.
- W4281777248 hasConcept C105795698 @default.
- W4281777248 hasConcept C121332964 @default.
- W4281777248 hasConcept C136197465 @default.
- W4281777248 hasConcept C138885662 @default.
- W4281777248 hasConcept C154945302 @default.
- W4281777248 hasConcept C15744967 @default.
- W4281777248 hasConcept C199075045 @default.
- W4281777248 hasConcept C204321447 @default.
- W4281777248 hasConcept C2778334786 @default.
- W4281777248 hasConcept C2780586970 @default.
- W4281777248 hasConcept C2780876879 @default.
- W4281777248 hasConcept C33923547 @default.
- W4281777248 hasConcept C41008148 @default.
- W4281777248 hasConcept C41895202 @default.
- W4281777248 hasConcept C44870925 @default.
- W4281777248 hasConcept C532629269 @default.
- W4281777248 hasConcept C542102704 @default.
- W4281777248 hasConcept C77805123 @default.
- W4281777248 hasConceptScore W4281777248C105795698 @default.
- W4281777248 hasConceptScore W4281777248C121332964 @default.
- W4281777248 hasConceptScore W4281777248C136197465 @default.
- W4281777248 hasConceptScore W4281777248C138885662 @default.
- W4281777248 hasConceptScore W4281777248C154945302 @default.
- W4281777248 hasConceptScore W4281777248C15744967 @default.
- W4281777248 hasConceptScore W4281777248C199075045 @default.
- W4281777248 hasConceptScore W4281777248C204321447 @default.
- W4281777248 hasConceptScore W4281777248C2778334786 @default.
- W4281777248 hasConceptScore W4281777248C2780586970 @default.
- W4281777248 hasConceptScore W4281777248C2780876879 @default.
- W4281777248 hasConceptScore W4281777248C33923547 @default.
- W4281777248 hasConceptScore W4281777248C41008148 @default.
- W4281777248 hasConceptScore W4281777248C41895202 @default.
- W4281777248 hasConceptScore W4281777248C44870925 @default.
- W4281777248 hasConceptScore W4281777248C532629269 @default.
- W4281777248 hasConceptScore W4281777248C542102704 @default.
- W4281777248 hasConceptScore W4281777248C77805123 @default.
- W4281777248 hasIssue "2" @default.
- W4281777248 hasLocation W42817772481 @default.
- W4281777248 hasOpenAccess W4281777248 @default.
- W4281777248 hasPrimaryLocation W42817772481 @default.
- W4281777248 hasRelatedWork W1963896162 @default.
- W4281777248 hasRelatedWork W1997311445 @default.
- W4281777248 hasRelatedWork W2104700403 @default.
- W4281777248 hasRelatedWork W2133515697 @default.
- W4281777248 hasRelatedWork W2328767133 @default.
- W4281777248 hasRelatedWork W3209168244 @default.
- W4281777248 hasRelatedWork W372685948 @default.
- W4281777248 hasRelatedWork W4281777248 @default.
- W4281777248 hasRelatedWork W4288033310 @default.
- W4281777248 hasRelatedWork W4323567048 @default.
- W4281777248 hasVolume "31" @default.
- W4281777248 isParatext "false" @default.
- W4281777248 isRetracted "false" @default.
- W4281777248 workType "article" @default.