Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281777609> ?p ?o ?g. }
- W4281777609 endingPage "101642" @default.
- W4281777609 startingPage "101642" @default.
- W4281777609 abstract "Representing causality in machine learning to predict control parameters is state-of-the-art research in intelligent control. This study presents a physics-based machine learning method providing a prediction model that guarantees enhanced interpretability conforming to physical laws. The proposed approach encodes physical knowledge as mapping relationships between variables in engineering dataset into the learning procedure through dimensional analysis. This derives causal relationships between the control parameter and its influencing factors. The proposed machine learning method's objective function is further improved by the penalty term in the regularization strategy. Verifications on the energy consumption prediction of tunnel boring machine prove that, the established model accords with basic principles in this field. Moreover, the proposed approach traces the impact of three major factors (structure, operation, and geology) along the construction section, offering each component's contribution rates to energy consumption. Compared with several commonly used machine learning algorithms, the proposed method reduces the need for large amounts of training data and demonstrates higher accuracy. The results indicate that the revealed causality and enhanced prediction performance of the proposed method advance the applicability of machine learning methods to intelligent control during construction." @default.
- W4281777609 created "2022-06-13" @default.
- W4281777609 creator A5061546129 @default.
- W4281777609 creator A5077740568 @default.
- W4281777609 creator A5078498439 @default.
- W4281777609 creator A5079611154 @default.
- W4281777609 creator A5081561451 @default.
- W4281777609 creator A5085993318 @default.
- W4281777609 date "2022-08-01" @default.
- W4281777609 modified "2023-10-16" @default.
- W4281777609 title "Physics-based machine learning method and the application to energy consumption prediction in tunneling construction" @default.
- W4281777609 cites W1990885752 @default.
- W4281777609 cites W2000769684 @default.
- W4281777609 cites W2002578951 @default.
- W4281777609 cites W2012933643 @default.
- W4281777609 cites W2015916019 @default.
- W4281777609 cites W2058907916 @default.
- W4281777609 cites W2071455833 @default.
- W4281777609 cites W2098421567 @default.
- W4281777609 cites W2119862467 @default.
- W4281777609 cites W2122825543 @default.
- W4281777609 cites W2140318171 @default.
- W4281777609 cites W2149503242 @default.
- W4281777609 cites W2158099522 @default.
- W4281777609 cites W2432116725 @default.
- W4281777609 cites W2750697805 @default.
- W4281777609 cites W2794556472 @default.
- W4281777609 cites W2801178762 @default.
- W4281777609 cites W2902508499 @default.
- W4281777609 cites W2909455890 @default.
- W4281777609 cites W2921018487 @default.
- W4281777609 cites W2946794331 @default.
- W4281777609 cites W2951644587 @default.
- W4281777609 cites W2963516151 @default.
- W4281777609 cites W2983535430 @default.
- W4281777609 cites W2987699057 @default.
- W4281777609 cites W2991322414 @default.
- W4281777609 cites W2996628681 @default.
- W4281777609 cites W2997099736 @default.
- W4281777609 cites W3003922491 @default.
- W4281777609 cites W3004261385 @default.
- W4281777609 cites W3025171962 @default.
- W4281777609 cites W3030791774 @default.
- W4281777609 cites W3034825434 @default.
- W4281777609 cites W3046010044 @default.
- W4281777609 cites W3047598527 @default.
- W4281777609 cites W3082352523 @default.
- W4281777609 cites W3112984608 @default.
- W4281777609 cites W3119554784 @default.
- W4281777609 cites W3132764117 @default.
- W4281777609 cites W3161060311 @default.
- W4281777609 cites W3198612789 @default.
- W4281777609 cites W3213761405 @default.
- W4281777609 cites W4211115701 @default.
- W4281777609 doi "https://doi.org/10.1016/j.aei.2022.101642" @default.
- W4281777609 hasPublicationYear "2022" @default.
- W4281777609 type Work @default.
- W4281777609 citedByCount "11" @default.
- W4281777609 countsByYear W42817776092023 @default.
- W4281777609 crossrefType "journal-article" @default.
- W4281777609 hasAuthorship W4281777609A5061546129 @default.
- W4281777609 hasAuthorship W4281777609A5077740568 @default.
- W4281777609 hasAuthorship W4281777609A5078498439 @default.
- W4281777609 hasAuthorship W4281777609A5079611154 @default.
- W4281777609 hasAuthorship W4281777609A5081561451 @default.
- W4281777609 hasAuthorship W4281777609A5085993318 @default.
- W4281777609 hasConcept C108583219 @default.
- W4281777609 hasConcept C119599485 @default.
- W4281777609 hasConcept C119857082 @default.
- W4281777609 hasConcept C127413603 @default.
- W4281777609 hasConcept C154945302 @default.
- W4281777609 hasConcept C202444582 @default.
- W4281777609 hasConcept C2776135515 @default.
- W4281777609 hasConcept C2780165032 @default.
- W4281777609 hasConcept C2781067378 @default.
- W4281777609 hasConcept C33923547 @default.
- W4281777609 hasConcept C41008148 @default.
- W4281777609 hasConcept C9652623 @default.
- W4281777609 hasConceptScore W4281777609C108583219 @default.
- W4281777609 hasConceptScore W4281777609C119599485 @default.
- W4281777609 hasConceptScore W4281777609C119857082 @default.
- W4281777609 hasConceptScore W4281777609C127413603 @default.
- W4281777609 hasConceptScore W4281777609C154945302 @default.
- W4281777609 hasConceptScore W4281777609C202444582 @default.
- W4281777609 hasConceptScore W4281777609C2776135515 @default.
- W4281777609 hasConceptScore W4281777609C2780165032 @default.
- W4281777609 hasConceptScore W4281777609C2781067378 @default.
- W4281777609 hasConceptScore W4281777609C33923547 @default.
- W4281777609 hasConceptScore W4281777609C41008148 @default.
- W4281777609 hasConceptScore W4281777609C9652623 @default.
- W4281777609 hasFunder F4320321001 @default.
- W4281777609 hasFunder F4320335777 @default.
- W4281777609 hasLocation W42817776091 @default.
- W4281777609 hasOpenAccess W4281777609 @default.
- W4281777609 hasPrimaryLocation W42817776091 @default.
- W4281777609 hasRelatedWork W2605281151 @default.
- W4281777609 hasRelatedWork W3006943036 @default.
- W4281777609 hasRelatedWork W3191046242 @default.