Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281783983> ?p ?o ?g. }
- W4281783983 endingPage "4843" @default.
- W4281783983 startingPage "4809" @default.
- W4281783983 abstract "Abstract In this article, we introduce a methodology for improving the accuracy and efficiency of reduced order models (ROMs) constructed using the least‐squares Petrov–Galerkin (LSPG) projection method through the introduction of preconditioning. Unlike prior related work, which focuses on preconditioning the linear systems arising within the ROM numerical solution procedure to improve linear solver performance, our approach leverages a preconditioning matrix directly within the minimization problem underlying the LSPG formulation. Applying preconditioning in this way has the potential to improve ROM accuracy for several reasons. First, preconditioning the LSPG formulation changes the norm defining the residual minimization, which can improve the residual‐based stability constant bounding the ROM solution's error. The incorporation of a preconditioner into the LSPG formulation can have the additional effect of scaling the components of the residual being minimized to make them roughly of the same magnitude, which can be beneficial when applying the LSPG method to problems with disparate scales (e.g., dimensional equations, multi‐physics problems). Importantly, we demonstrate that an “ideal preconditioned” LSPG ROM (a ROM in which the preconditioner is the inverse of the Jacobian of its corresponding full order model) emulates projection of the full order model solution increment onto the reduced basis. This quantity defines a lower bound on the error of a ROM solution for a given reduced basis. By designing preconditioners that approximate the Jacobian inverse—as is common in designing preconditioners for solving linear systems—it is possible to obtain a ROM whose error approaches this lower bound. The proposed approach is evaluated on several mechanical and thermo‐mechanical problems implemented within the Albany HPC code and run in the predictive regime, with prediction across material parameter space. We demonstrate numerically that the introduction of simple Jacobi, Gauss‐Seidel, and ILU preconditioners into the proper orthogonal decomposition/LSPG formulation reduces significantly the ROM solution error, the reduced Jacobian condition number, the number of nonlinear iterations required to reach convergence, and the wall time (thereby improving efficiency). Moreover, our numerical results reveal that the introduction of preconditioning can deliver a robust and accurate solution for test cases in which the unpreconditioned LSPG method fails to converge." @default.
- W4281783983 created "2022-06-13" @default.
- W4281783983 creator A5044052929 @default.
- W4281783983 creator A5049294766 @default.
- W4281783983 creator A5061258868 @default.
- W4281783983 creator A5085119350 @default.
- W4281783983 date "2022-06-29" @default.
- W4281783983 modified "2023-10-01" @default.
- W4281783983 title "Preconditioned least‐squares Petrov–Galerkin reduced order models" @default.
- W4281783983 cites W1544956813 @default.
- W4281783983 cites W1579236455 @default.
- W4281783983 cites W1788163261 @default.
- W4281783983 cites W1881337285 @default.
- W4281783983 cites W1902394114 @default.
- W4281783983 cites W1974533022 @default.
- W4281783983 cites W1998028876 @default.
- W4281783983 cites W2003468238 @default.
- W4281783983 cites W2014356541 @default.
- W4281783983 cites W2022510510 @default.
- W4281783983 cites W2022916138 @default.
- W4281783983 cites W2049753327 @default.
- W4281783983 cites W2059316647 @default.
- W4281783983 cites W2062012145 @default.
- W4281783983 cites W2064733273 @default.
- W4281783983 cites W2066985427 @default.
- W4281783983 cites W2068991306 @default.
- W4281783983 cites W2078794610 @default.
- W4281783983 cites W2088872157 @default.
- W4281783983 cites W2089774562 @default.
- W4281783983 cites W2098077093 @default.
- W4281783983 cites W2098980185 @default.
- W4281783983 cites W2108242961 @default.
- W4281783983 cites W2120061163 @default.
- W4281783983 cites W2120101088 @default.
- W4281783983 cites W2124500362 @default.
- W4281783983 cites W2126042578 @default.
- W4281783983 cites W2147414751 @default.
- W4281783983 cites W2161155740 @default.
- W4281783983 cites W2168386575 @default.
- W4281783983 cites W2200119120 @default.
- W4281783983 cites W2282105799 @default.
- W4281783983 cites W2319193755 @default.
- W4281783983 cites W2467177778 @default.
- W4281783983 cites W2477214732 @default.
- W4281783983 cites W2500110668 @default.
- W4281783983 cites W2508290417 @default.
- W4281783983 cites W2559929106 @default.
- W4281783983 cites W2563263390 @default.
- W4281783983 cites W2590291506 @default.
- W4281783983 cites W2620056973 @default.
- W4281783983 cites W2773572071 @default.
- W4281783983 cites W2795014364 @default.
- W4281783983 cites W2907646486 @default.
- W4281783983 cites W2949446725 @default.
- W4281783983 cites W2963509795 @default.
- W4281783983 cites W2986795381 @default.
- W4281783983 cites W3042354052 @default.
- W4281783983 cites W3045279959 @default.
- W4281783983 cites W3097150307 @default.
- W4281783983 cites W3098245765 @default.
- W4281783983 cites W3103181576 @default.
- W4281783983 cites W3104233249 @default.
- W4281783983 cites W3105455822 @default.
- W4281783983 cites W3133794395 @default.
- W4281783983 cites W3153503790 @default.
- W4281783983 cites W3203197183 @default.
- W4281783983 cites W3212629973 @default.
- W4281783983 cites W4224006757 @default.
- W4281783983 cites W4244538750 @default.
- W4281783983 cites W4293205277 @default.
- W4281783983 doi "https://doi.org/10.1002/nme.7056" @default.
- W4281783983 hasPublicationYear "2022" @default.
- W4281783983 type Work @default.
- W4281783983 citedByCount "4" @default.
- W4281783983 countsByYear W42817839832023 @default.
- W4281783983 crossrefType "journal-article" @default.
- W4281783983 hasAuthorship W4281783983A5044052929 @default.
- W4281783983 hasAuthorship W4281783983A5049294766 @default.
- W4281783983 hasAuthorship W4281783983A5061258868 @default.
- W4281783983 hasAuthorship W4281783983A5085119350 @default.
- W4281783983 hasBestOaLocation W42817839831 @default.
- W4281783983 hasConcept C11413529 @default.
- W4281783983 hasConcept C126255220 @default.
- W4281783983 hasConcept C155512373 @default.
- W4281783983 hasConcept C159694833 @default.
- W4281783983 hasConcept C167431342 @default.
- W4281783983 hasConcept C200331156 @default.
- W4281783983 hasConcept C2778770139 @default.
- W4281783983 hasConcept C28826006 @default.
- W4281783983 hasConcept C33923547 @default.
- W4281783983 hasConcept C41008148 @default.
- W4281783983 hasConcept C57493831 @default.
- W4281783983 hasConceptScore W4281783983C11413529 @default.
- W4281783983 hasConceptScore W4281783983C126255220 @default.
- W4281783983 hasConceptScore W4281783983C155512373 @default.
- W4281783983 hasConceptScore W4281783983C159694833 @default.
- W4281783983 hasConceptScore W4281783983C167431342 @default.
- W4281783983 hasConceptScore W4281783983C200331156 @default.