Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281789852> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4281789852 endingPage "201" @default.
- W4281789852 startingPage "123" @default.
- W4281789852 abstract "This paper deals with the period function of the reversible quadratic centersXν=−y(1−x)∂x+(x+Dx2+Fy2)∂y, where ν=(D,F)∈R2. Compactifying the vector field to S2, the boundary of the period annulus has two connected components, the center itself and a polycycle. We call them the inner and outer boundary of the period annulus, respectively. We are interested in the bifurcation of critical periodic orbits from the polycycle Πν at the outer boundary. A critical period is an isolated critical point of the period function. The criticality of the period function at the outer boundary is the maximal number of critical periodic orbits of Xν that tend to Πν0 in the Hausdorff sense as ν→ν0. This notion is akin to the cyclicity in Hilbert's 16th Problem. Our main result (Theorem A) shows that the criticality at the outer boundary is at most 2 for all ν=(D,F)∈R2 outside the segments {−1}×[0,1] and {0}×[0,2]. With regard to the bifurcation from the inner boundary, Chicone and Jacobs proved in their seminal paper on the issue that the upper bound is 2 for all ν∈R2. In this paper the techniques are different because, while the period function extends analytically to the center, it has no smooth extension to the polycycle. We show that the period function has an asymptotic expansion near the polycycle with the remainder being uniformly flat with respect to ν and where the principal part is given in a monomial scale containing a deformation of the logarithm, the so-called Écalle-Roussarie compensator. More precisely, Theorem A follows by obtaining the asymptotic expansion to fourth order and computing its coefficients, which are not polynomial in ν but transcendental. Theorem A covers two of the four quadratic isochrones, which are the most delicate parameters to study because its period function is constant. The criticality at the inner boundary in the isochronous case is bounded by the number of generators of the ideal of all the period constants but there is no such approach for the criticality at the outer boundary. A crucial point to study it in the isochronous case is that the flatness of the remainder in the asymptotic expansion is preserved after the derivation with respect to parameters. We think that this constitutes a novelty that is of particular interest also in the study of similar problems for limit cycles in the context of Hilbert's 16th Problem. Theorem A also reinforces the validity of a long standing conjecture by Chicone claiming that the quadratic centers have at most two critical periodic orbits. A less ambitious goal is to prove the existence of a uniform upper bound for the number of critical periodic orbits in the family of quadratic centers. By a compactness argument this would follow if one can prove that the criticality of the period function at the outer boundary of any quadratic center is finite. Theorem A leaves us very close to this existential result." @default.
- W4281789852 created "2022-06-13" @default.
- W4281789852 creator A5060001114 @default.
- W4281789852 creator A5089172279 @default.
- W4281789852 date "2022-09-01" @default.
- W4281789852 modified "2023-10-14" @default.
- W4281789852 title "The criticality of reversible quadratic centers at the outer boundary of its period annulus" @default.
- W4281789852 cites W1676059085 @default.
- W4281789852 cites W1970694037 @default.
- W4281789852 cites W1982948808 @default.
- W4281789852 cites W1990159385 @default.
- W4281789852 cites W2033964914 @default.
- W4281789852 cites W2040391551 @default.
- W4281789852 cites W2052141401 @default.
- W4281789852 cites W2054609165 @default.
- W4281789852 cites W2056854432 @default.
- W4281789852 cites W2061544233 @default.
- W4281789852 cites W2065180482 @default.
- W4281789852 cites W2091661198 @default.
- W4281789852 cites W2103135356 @default.
- W4281789852 cites W2151613048 @default.
- W4281789852 cites W2219235371 @default.
- W4281789852 cites W2546600784 @default.
- W4281789852 cites W2963016364 @default.
- W4281789852 cites W2963802654 @default.
- W4281789852 cites W3035580887 @default.
- W4281789852 cites W3035834995 @default.
- W4281789852 cites W3101571840 @default.
- W4281789852 cites W3128454324 @default.
- W4281789852 cites W4200486774 @default.
- W4281789852 doi "https://doi.org/10.1016/j.jde.2022.05.026" @default.
- W4281789852 hasPublicationYear "2022" @default.
- W4281789852 type Work @default.
- W4281789852 citedByCount "1" @default.
- W4281789852 countsByYear W42817898522022 @default.
- W4281789852 crossrefType "journal-article" @default.
- W4281789852 hasAuthorship W4281789852A5060001114 @default.
- W4281789852 hasAuthorship W4281789852A5089172279 @default.
- W4281789852 hasBestOaLocation W42817898521 @default.
- W4281789852 hasConcept C121332964 @default.
- W4281789852 hasConcept C125611927 @default.
- W4281789852 hasConcept C134306372 @default.
- W4281789852 hasConcept C14036430 @default.
- W4281789852 hasConcept C150936888 @default.
- W4281789852 hasConcept C185544564 @default.
- W4281789852 hasConcept C196298200 @default.
- W4281789852 hasConcept C24890656 @default.
- W4281789852 hasConcept C2781291010 @default.
- W4281789852 hasConcept C33923547 @default.
- W4281789852 hasConcept C59822182 @default.
- W4281789852 hasConcept C62354387 @default.
- W4281789852 hasConcept C78458016 @default.
- W4281789852 hasConcept C86803240 @default.
- W4281789852 hasConceptScore W4281789852C121332964 @default.
- W4281789852 hasConceptScore W4281789852C125611927 @default.
- W4281789852 hasConceptScore W4281789852C134306372 @default.
- W4281789852 hasConceptScore W4281789852C14036430 @default.
- W4281789852 hasConceptScore W4281789852C150936888 @default.
- W4281789852 hasConceptScore W4281789852C185544564 @default.
- W4281789852 hasConceptScore W4281789852C196298200 @default.
- W4281789852 hasConceptScore W4281789852C24890656 @default.
- W4281789852 hasConceptScore W4281789852C2781291010 @default.
- W4281789852 hasConceptScore W4281789852C33923547 @default.
- W4281789852 hasConceptScore W4281789852C59822182 @default.
- W4281789852 hasConceptScore W4281789852C62354387 @default.
- W4281789852 hasConceptScore W4281789852C78458016 @default.
- W4281789852 hasConceptScore W4281789852C86803240 @default.
- W4281789852 hasLocation W42817898521 @default.
- W4281789852 hasLocation W42817898522 @default.
- W4281789852 hasLocation W42817898523 @default.
- W4281789852 hasOpenAccess W4281789852 @default.
- W4281789852 hasPrimaryLocation W42817898521 @default.
- W4281789852 hasRelatedWork W1545937606 @default.
- W4281789852 hasRelatedWork W2045089852 @default.
- W4281789852 hasRelatedWork W2790696904 @default.
- W4281789852 hasRelatedWork W2810243312 @default.
- W4281789852 hasRelatedWork W2963016364 @default.
- W4281789852 hasRelatedWork W3008607579 @default.
- W4281789852 hasRelatedWork W3094827417 @default.
- W4281789852 hasRelatedWork W4206452777 @default.
- W4281789852 hasRelatedWork W4294589385 @default.
- W4281789852 hasRelatedWork W4302376781 @default.
- W4281789852 hasVolume "332" @default.
- W4281789852 isParatext "false" @default.
- W4281789852 isRetracted "false" @default.
- W4281789852 workType "article" @default.