Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281803326> ?p ?o ?g. }
- W4281803326 endingPage "115833" @default.
- W4281803326 startingPage "115833" @default.
- W4281803326 abstract "Greenhouse gas (GHG) emissions from fossil fuel-generated electricity can be avoided by utilizing biomass (wood waste) available in rural communities. This study developed a two-layer supply chain network model comprising feedstock supply sites and candidate power plant locations. The multi-objective mathematical model considers various decisions such as power plant locations, allocation of suppliers to power plants, biomass harvesting, storage, and transportation options in the supply chain network. The goal of this formulation is to minimize the overall system cost and GHG emissions in each process of the entire network. A case study is presented in which a direct-fired power plant converts wood waste to electricity for the Grenada County, Mississippi. A Pareto solution was obtained for the case study using a Lexicographic augmented ∊-constraint algorithm. The solution with no limits on GHG emissions facilitates a higher power plant capacity, 25 MW with lower system costs and satisfies 32.1% of the total electricity demand of the case study area. The solution with the highest GHG emission restrictions (5.19 Kiloton (kt)) reduces the power plant capacity to 10 MW, which satisfies only 10.2% of the total electricity demand with higher overall system costs due to the increase in the purchase of electricity from external sources as penalty cost. Finally, a sensitivity analysis was performed by varying the total feedstock supply quantity, total electricity demand, and conversion rate of the power plant. The results show that 10.2–41.5% (base case- 40% increase in conversion rate) of the total electricity can be satisfied by the bioenergy facility taking into account the solution which facilitates bioenergy facility. In conclusion, by proper selection of power plant location and plant capacity based on the supply chain network, wood waste-based electricity generation can reduce both GHG emissions and total operational costs. This model can be applied to any region to determine the ideal location of a bioenergy facility." @default.
- W4281803326 created "2022-06-13" @default.
- W4281803326 creator A5061142577 @default.
- W4281803326 creator A5068182482 @default.
- W4281803326 creator A5071258953 @default.
- W4281803326 creator A5077646571 @default.
- W4281803326 date "2022-08-01" @default.
- W4281803326 modified "2023-10-11" @default.
- W4281803326 title "Multi-objective optimization model for regional renewable biomass supported electricity generation in rural regions" @default.
- W4281803326 cites W170913456 @default.
- W4281803326 cites W1766836664 @default.
- W4281803326 cites W1788349646 @default.
- W4281803326 cites W1969602213 @default.
- W4281803326 cites W1971461038 @default.
- W4281803326 cites W1971512029 @default.
- W4281803326 cites W1985198755 @default.
- W4281803326 cites W1986223295 @default.
- W4281803326 cites W1987415646 @default.
- W4281803326 cites W1988379811 @default.
- W4281803326 cites W1991783456 @default.
- W4281803326 cites W1992034307 @default.
- W4281803326 cites W1997127736 @default.
- W4281803326 cites W2006406807 @default.
- W4281803326 cites W2010103539 @default.
- W4281803326 cites W2044382963 @default.
- W4281803326 cites W2050333882 @default.
- W4281803326 cites W2052681235 @default.
- W4281803326 cites W2056606098 @default.
- W4281803326 cites W2063130267 @default.
- W4281803326 cites W2068303762 @default.
- W4281803326 cites W2082407003 @default.
- W4281803326 cites W2085966040 @default.
- W4281803326 cites W2086604663 @default.
- W4281803326 cites W2094287934 @default.
- W4281803326 cites W2110497518 @default.
- W4281803326 cites W2130400949 @default.
- W4281803326 cites W2131431173 @default.
- W4281803326 cites W2143022235 @default.
- W4281803326 cites W2147714864 @default.
- W4281803326 cites W2192883631 @default.
- W4281803326 cites W2341058359 @default.
- W4281803326 cites W2342510373 @default.
- W4281803326 cites W2514531114 @default.
- W4281803326 cites W2538351030 @default.
- W4281803326 cites W2548620527 @default.
- W4281803326 cites W2586563157 @default.
- W4281803326 cites W2588891195 @default.
- W4281803326 cites W2743998393 @default.
- W4281803326 cites W2754910559 @default.
- W4281803326 cites W2770310016 @default.
- W4281803326 cites W2794013541 @default.
- W4281803326 cites W2801952743 @default.
- W4281803326 cites W2933390872 @default.
- W4281803326 cites W2943031899 @default.
- W4281803326 cites W2947413319 @default.
- W4281803326 cites W2947495040 @default.
- W4281803326 cites W2968451501 @default.
- W4281803326 cites W2973930899 @default.
- W4281803326 cites W3004696313 @default.
- W4281803326 cites W3016604317 @default.
- W4281803326 cites W3033012785 @default.
- W4281803326 cites W3034157346 @default.
- W4281803326 cites W3089355135 @default.
- W4281803326 cites W3118653873 @default.
- W4281803326 cites W3120738563 @default.
- W4281803326 cites W3127838100 @default.
- W4281803326 cites W3128568782 @default.
- W4281803326 cites W3137024605 @default.
- W4281803326 cites W3139395991 @default.
- W4281803326 cites W3181116835 @default.
- W4281803326 cites W3189986486 @default.
- W4281803326 cites W3195347295 @default.
- W4281803326 cites W3205706159 @default.
- W4281803326 cites W3209305965 @default.
- W4281803326 cites W971933325 @default.
- W4281803326 doi "https://doi.org/10.1016/j.enconman.2022.115833" @default.
- W4281803326 hasPublicationYear "2022" @default.
- W4281803326 type Work @default.
- W4281803326 citedByCount "12" @default.
- W4281803326 countsByYear W42818033262022 @default.
- W4281803326 countsByYear W42818033262023 @default.
- W4281803326 crossrefType "journal-article" @default.
- W4281803326 hasAuthorship W4281803326A5061142577 @default.
- W4281803326 hasAuthorship W4281803326A5068182482 @default.
- W4281803326 hasAuthorship W4281803326A5071258953 @default.
- W4281803326 hasAuthorship W4281803326A5077646571 @default.
- W4281803326 hasBestOaLocation W42818033261 @default.
- W4281803326 hasConcept C108713360 @default.
- W4281803326 hasConcept C115540264 @default.
- W4281803326 hasConcept C119599485 @default.
- W4281803326 hasConcept C121332964 @default.
- W4281803326 hasConcept C127413603 @default.
- W4281803326 hasConcept C144133560 @default.
- W4281803326 hasConcept C162324750 @default.
- W4281803326 hasConcept C162853370 @default.
- W4281803326 hasConcept C163258240 @default.
- W4281803326 hasConcept C175444787 @default.
- W4281803326 hasConcept C178790620 @default.