Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281806272> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4281806272 abstract "The citrus industry depends on the early identification of fungal infections, since a few infected fruits may spread the disease to a whole batch, resulting in substantial economic losses. In recent years, deep learning has played a significant role in the automated identification and categorization of illnesses in vegetables and fruits. This has increased the quality and quantity of vegetables and fruits. Numerous illnesses have a negative influence on the quality of citrus crops. Different pre-trained CNN models were employed in this research to identify and classify citrus diseases. The different CNN Models are compared with five pre-trained CNN models for detecting citrus diseases. Different combinations of training and learning methods are used with pre-trained architectures, such as VGG16, InceptionNet, ResNet, NasNet, MobileNet, and CNN for disease detection. A dataset of around 1500 images of diseases and healthy citrus leaves has been collected from different sources. The simulation shows that, of all the models, the MobileNet architecture is the most accurate, with an accuracy rate of 96%." @default.
- W4281806272 created "2022-06-13" @default.
- W4281806272 creator A5011964819 @default.
- W4281806272 creator A5063081545 @default.
- W4281806272 creator A5078109244 @default.
- W4281806272 date "2022-08-15" @default.
- W4281806272 modified "2023-10-18" @default.
- W4281806272 title "Analysis of Citrus Diseases and Classification Based on Deep Learning Models" @default.
- W4281806272 cites W1796061043 @default.
- W4281806272 cites W1980623462 @default.
- W4281806272 cites W2014408679 @default.
- W4281806272 cites W2032273566 @default.
- W4281806272 cites W2038963987 @default.
- W4281806272 cites W2044511872 @default.
- W4281806272 cites W2048896634 @default.
- W4281806272 cites W2062599688 @default.
- W4281806272 cites W2064808659 @default.
- W4281806272 cites W2105554350 @default.
- W4281806272 cites W2183341477 @default.
- W4281806272 cites W2536452926 @default.
- W4281806272 cites W2562336813 @default.
- W4281806272 cites W2572262262 @default.
- W4281806272 cites W2624385633 @default.
- W4281806272 cites W2625680238 @default.
- W4281806272 cites W2794915299 @default.
- W4281806272 cites W2801303530 @default.
- W4281806272 cites W2886590014 @default.
- W4281806272 cites W2901867974 @default.
- W4281806272 cites W2922471409 @default.
- W4281806272 cites W2951898785 @default.
- W4281806272 cites W2955075679 @default.
- W4281806272 cites W2962791118 @default.
- W4281806272 cites W2969364300 @default.
- W4281806272 cites W3029816221 @default.
- W4281806272 cites W3111506096 @default.
- W4281806272 cites W3204243169 @default.
- W4281806272 doi "https://doi.org/10.1142/s1752890922410100" @default.
- W4281806272 hasPublicationYear "2022" @default.
- W4281806272 type Work @default.
- W4281806272 citedByCount "0" @default.
- W4281806272 crossrefType "journal-article" @default.
- W4281806272 hasAuthorship W4281806272A5011964819 @default.
- W4281806272 hasAuthorship W4281806272A5063081545 @default.
- W4281806272 hasAuthorship W4281806272A5078109244 @default.
- W4281806272 hasConcept C108583219 @default.
- W4281806272 hasConcept C111472728 @default.
- W4281806272 hasConcept C116834253 @default.
- W4281806272 hasConcept C119857082 @default.
- W4281806272 hasConcept C138885662 @default.
- W4281806272 hasConcept C153180895 @default.
- W4281806272 hasConcept C154945302 @default.
- W4281806272 hasConcept C2779530757 @default.
- W4281806272 hasConcept C41008148 @default.
- W4281806272 hasConcept C59822182 @default.
- W4281806272 hasConcept C86803240 @default.
- W4281806272 hasConcept C94124525 @default.
- W4281806272 hasConceptScore W4281806272C108583219 @default.
- W4281806272 hasConceptScore W4281806272C111472728 @default.
- W4281806272 hasConceptScore W4281806272C116834253 @default.
- W4281806272 hasConceptScore W4281806272C119857082 @default.
- W4281806272 hasConceptScore W4281806272C138885662 @default.
- W4281806272 hasConceptScore W4281806272C153180895 @default.
- W4281806272 hasConceptScore W4281806272C154945302 @default.
- W4281806272 hasConceptScore W4281806272C2779530757 @default.
- W4281806272 hasConceptScore W4281806272C41008148 @default.
- W4281806272 hasConceptScore W4281806272C59822182 @default.
- W4281806272 hasConceptScore W4281806272C86803240 @default.
- W4281806272 hasConceptScore W4281806272C94124525 @default.
- W4281806272 hasIssue "03" @default.
- W4281806272 hasLocation W42818062721 @default.
- W4281806272 hasOpenAccess W4281806272 @default.
- W4281806272 hasPrimaryLocation W42818062721 @default.
- W4281806272 hasRelatedWork W2773120646 @default.
- W4281806272 hasRelatedWork W2922457425 @default.
- W4281806272 hasRelatedWork W3014300295 @default.
- W4281806272 hasRelatedWork W3164822677 @default.
- W4281806272 hasRelatedWork W3215138031 @default.
- W4281806272 hasRelatedWork W4223943233 @default.
- W4281806272 hasRelatedWork W4225161397 @default.
- W4281806272 hasRelatedWork W4250304930 @default.
- W4281806272 hasRelatedWork W4299487748 @default.
- W4281806272 hasRelatedWork W4309045103 @default.
- W4281806272 hasVolume "15" @default.
- W4281806272 isParatext "false" @default.
- W4281806272 isRetracted "false" @default.
- W4281806272 workType "article" @default.