Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281806702> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4281806702 endingPage "104342" @default.
- W4281806702 startingPage "104342" @default.
- W4281806702 abstract "One of the state-of-the-art computer vision applications is scene understanding and visual contextual awareness. Despite the numerous detection and classification-based studies, the literature lacks semantic segmentation methods for a more comprehensive and precise understanding of the soil included scene due to the scarcity of annotated datasets; the extracted information from an understood scene is worthwhile in project fleet management, claims management, equipment productivity analysis, safety, and soil classification. Hence, this study presents a vision-based approach for soil-included scene understanding and classifying them into different categories according to ASTM D2488, using semantic segmentation. An annotated dataset of various soil types containing 3043 images was developed to train four Deeplab v3+ variants with modified decoders. Five-fold cross-validation indicates the remarkable performance of the best variant with a mean Jaccard index of 0.9. The application and effects of subpixel upsampling and exit-flow CRF were also examined." @default.
- W4281806702 created "2022-06-13" @default.
- W4281806702 creator A5020698566 @default.
- W4281806702 creator A5024884409 @default.
- W4281806702 creator A5061618700 @default.
- W4281806702 creator A5087846437 @default.
- W4281806702 date "2022-08-01" @default.
- W4281806702 modified "2023-10-06" @default.
- W4281806702 title "Deep semantic segmentation for visual scene understanding of soil types" @default.
- W4281806702 cites W1964688801 @default.
- W4281806702 cites W1973011926 @default.
- W4281806702 cites W1974079881 @default.
- W4281806702 cites W2011051638 @default.
- W4281806702 cites W2037227137 @default.
- W4281806702 cites W2076491225 @default.
- W4281806702 cites W2114683829 @default.
- W4281806702 cites W2116719896 @default.
- W4281806702 cites W2201535086 @default.
- W4281806702 cites W2767106145 @default.
- W4281806702 cites W2804860796 @default.
- W4281806702 cites W2896728889 @default.
- W4281806702 cites W2905163589 @default.
- W4281806702 cites W2922656120 @default.
- W4281806702 cites W2936503027 @default.
- W4281806702 cites W2941356554 @default.
- W4281806702 cites W2945770468 @default.
- W4281806702 cites W2952394193 @default.
- W4281806702 cites W2963328610 @default.
- W4281806702 cites W2963881378 @default.
- W4281806702 cites W2966167487 @default.
- W4281806702 cites W2966168255 @default.
- W4281806702 cites W2967192745 @default.
- W4281806702 cites W2971627463 @default.
- W4281806702 cites W2971929189 @default.
- W4281806702 cites W2988952749 @default.
- W4281806702 cites W2989663977 @default.
- W4281806702 cites W2990392801 @default.
- W4281806702 cites W2996717109 @default.
- W4281806702 cites W3005856570 @default.
- W4281806702 cites W3006460367 @default.
- W4281806702 cites W3012190739 @default.
- W4281806702 cites W3014583121 @default.
- W4281806702 cites W3020751043 @default.
- W4281806702 cites W3033645921 @default.
- W4281806702 cites W3035665735 @default.
- W4281806702 cites W3090773703 @default.
- W4281806702 cites W3104282073 @default.
- W4281806702 cites W3123941068 @default.
- W4281806702 cites W3133605536 @default.
- W4281806702 cites W3163568349 @default.
- W4281806702 cites W3175205795 @default.
- W4281806702 cites W3195846826 @default.
- W4281806702 cites W4229969851 @default.
- W4281806702 doi "https://doi.org/10.1016/j.autcon.2022.104342" @default.
- W4281806702 hasPublicationYear "2022" @default.
- W4281806702 type Work @default.
- W4281806702 citedByCount "5" @default.
- W4281806702 countsByYear W42818067022022 @default.
- W4281806702 countsByYear W42818067022023 @default.
- W4281806702 crossrefType "journal-article" @default.
- W4281806702 hasAuthorship W4281806702A5020698566 @default.
- W4281806702 hasAuthorship W4281806702A5024884409 @default.
- W4281806702 hasAuthorship W4281806702A5061618700 @default.
- W4281806702 hasAuthorship W4281806702A5087846437 @default.
- W4281806702 hasConcept C110384440 @default.
- W4281806702 hasConcept C115961682 @default.
- W4281806702 hasConcept C153180895 @default.
- W4281806702 hasConcept C154945302 @default.
- W4281806702 hasConcept C203519979 @default.
- W4281806702 hasConcept C41008148 @default.
- W4281806702 hasConcept C89600930 @default.
- W4281806702 hasConceptScore W4281806702C110384440 @default.
- W4281806702 hasConceptScore W4281806702C115961682 @default.
- W4281806702 hasConceptScore W4281806702C153180895 @default.
- W4281806702 hasConceptScore W4281806702C154945302 @default.
- W4281806702 hasConceptScore W4281806702C203519979 @default.
- W4281806702 hasConceptScore W4281806702C41008148 @default.
- W4281806702 hasConceptScore W4281806702C89600930 @default.
- W4281806702 hasLocation W42818067021 @default.
- W4281806702 hasOpenAccess W4281806702 @default.
- W4281806702 hasPrimaryLocation W42818067021 @default.
- W4281806702 hasRelatedWork W2069533927 @default.
- W4281806702 hasRelatedWork W2971066617 @default.
- W4281806702 hasRelatedWork W3012728910 @default.
- W4281806702 hasRelatedWork W3094077541 @default.
- W4281806702 hasRelatedWork W3120092106 @default.
- W4281806702 hasRelatedWork W3174642689 @default.
- W4281806702 hasRelatedWork W4230417392 @default.
- W4281806702 hasRelatedWork W4293036922 @default.
- W4281806702 hasRelatedWork W4317748866 @default.
- W4281806702 hasRelatedWork W4385154950 @default.
- W4281806702 hasVolume "140" @default.
- W4281806702 isParatext "false" @default.
- W4281806702 isRetracted "false" @default.
- W4281806702 workType "article" @default.