Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281874728> ?p ?o ?g. }
- W4281874728 endingPage "e0268337" @default.
- W4281874728 startingPage "e0268337" @default.
- W4281874728 abstract "Dysarthria may present during the natural course of many degenerative neurological conditions. Hypokinetic and ataxic dysarthria are common in movement disorders and represent the underlying neuropathology. We developed an artificial intelligence (AI) model to distinguish ataxic dysarthria and hypokinetic dysarthria from normal speech and differentiate ataxic and hypokinetic speech in parkinsonian diseases and cerebellar ataxia. We screened 804 perceptual speech analyses performed in the Samsung Medical Center Neurology Department between January 2017 and December 2020. The data of patients diagnosed with parkinsonian disorders or cerebellar ataxia were included. Two speech tasks (numbering from 1 to 50 and reading nine sentences) were analyzed. We adopted convolutional neural networks and developed a patch-wise wave splitting and integrating AI system for audio classification (PWSI-AI-AC) to differentiate between ataxic and hypokinetic speech. Of the 395 speech recordings for the reading task, 76, 112, and 207 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. Of the 409 recordings of the numbering task, 82, 111, and 216 were from normal, ataxic dysarthria, and hypokinetic dysarthria subjects, respectively. The reading and numbering task recordings were classified with 5-fold cross-validation using PWSI-AI-AC as follows: hypokinetic dysarthria vs. others (area under the curve: 0.92 ± 0.01 and 0.92 ± 0.02), ataxia vs. others (0.93 ± 0.04 and 0.89 ± 0.02), hypokinetic dysarthria vs. ataxia (0.96 ± 0.02 and 0.95 ± 0.01), hypokinetic dysarthria vs. none (0.86 ± 0.03 and 0.87 ± 0.05), and ataxia vs. none (0.87 ± 0.07 and 0.87 ± 0.09), respectively. PWSI-AI-AC showed reliable performance in differentiating ataxic and hypokinetic dysarthria and effectively augmented data to classify the types even with limited training samples. The proposed fully automatic AI system outperforms neurology residents. Our model can provide effective guidelines for screening related diseases and differential diagnosis of neurodegenerative diseases." @default.
- W4281874728 created "2022-06-13" @default.
- W4281874728 creator A5000328837 @default.
- W4281874728 creator A5007845743 @default.
- W4281874728 creator A5010713404 @default.
- W4281874728 creator A5011510430 @default.
- W4281874728 creator A5022590014 @default.
- W4281874728 creator A5022814289 @default.
- W4281874728 creator A5024870164 @default.
- W4281874728 creator A5029609597 @default.
- W4281874728 creator A5068806174 @default.
- W4281874728 creator A5069226050 @default.
- W4281874728 creator A5073284312 @default.
- W4281874728 creator A5079317230 @default.
- W4281874728 creator A5089700022 @default.
- W4281874728 creator A5090093954 @default.
- W4281874728 date "2022-06-03" @default.
- W4281874728 modified "2023-10-10" @default.
- W4281874728 title "Detection and differentiation of ataxic and hypokinetic dysarthria in cerebellar ataxia and parkinsonian disorders via wave splitting and integrating neural networks" @default.
- W4281874728 cites W1549820035 @default.
- W4281874728 cites W1966484475 @default.
- W4281874728 cites W1973119332 @default.
- W4281874728 cites W1997600023 @default.
- W4281874728 cites W2008560062 @default.
- W4281874728 cites W2018657318 @default.
- W4281874728 cites W2024384732 @default.
- W4281874728 cites W2048412971 @default.
- W4281874728 cites W2064610785 @default.
- W4281874728 cites W2067147213 @default.
- W4281874728 cites W2069819146 @default.
- W4281874728 cites W2092971144 @default.
- W4281874728 cites W2108798814 @default.
- W4281874728 cites W2155299862 @default.
- W4281874728 cites W2165096064 @default.
- W4281874728 cites W2165698076 @default.
- W4281874728 cites W2191779130 @default.
- W4281874728 cites W2281923782 @default.
- W4281874728 cites W2318950463 @default.
- W4281874728 cites W2395579298 @default.
- W4281874728 cites W2531872507 @default.
- W4281874728 cites W2623663856 @default.
- W4281874728 cites W2767672903 @default.
- W4281874728 cites W2798571323 @default.
- W4281874728 cites W2889195510 @default.
- W4281874728 cites W2889299727 @default.
- W4281874728 cites W2895658414 @default.
- W4281874728 cites W2920433390 @default.
- W4281874728 cites W2939302023 @default.
- W4281874728 cites W2964891022 @default.
- W4281874728 cites W2972477350 @default.
- W4281874728 cites W2992840888 @default.
- W4281874728 cites W3027101363 @default.
- W4281874728 cites W3092062088 @default.
- W4281874728 cites W3092490940 @default.
- W4281874728 cites W3093686084 @default.
- W4281874728 cites W3094550259 @default.
- W4281874728 cites W3125252695 @default.
- W4281874728 cites W3130967494 @default.
- W4281874728 cites W3155926737 @default.
- W4281874728 cites W3158559908 @default.
- W4281874728 cites W3214688792 @default.
- W4281874728 doi "https://doi.org/10.1371/journal.pone.0268337" @default.
- W4281874728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35658000" @default.
- W4281874728 hasPublicationYear "2022" @default.
- W4281874728 type Work @default.
- W4281874728 citedByCount "7" @default.
- W4281874728 countsByYear W42818747282023 @default.
- W4281874728 crossrefType "journal-article" @default.
- W4281874728 hasAuthorship W4281874728A5000328837 @default.
- W4281874728 hasAuthorship W4281874728A5007845743 @default.
- W4281874728 hasAuthorship W4281874728A5010713404 @default.
- W4281874728 hasAuthorship W4281874728A5011510430 @default.
- W4281874728 hasAuthorship W4281874728A5022590014 @default.
- W4281874728 hasAuthorship W4281874728A5022814289 @default.
- W4281874728 hasAuthorship W4281874728A5024870164 @default.
- W4281874728 hasAuthorship W4281874728A5029609597 @default.
- W4281874728 hasAuthorship W4281874728A5068806174 @default.
- W4281874728 hasAuthorship W4281874728A5069226050 @default.
- W4281874728 hasAuthorship W4281874728A5073284312 @default.
- W4281874728 hasAuthorship W4281874728A5079317230 @default.
- W4281874728 hasAuthorship W4281874728A5089700022 @default.
- W4281874728 hasAuthorship W4281874728A5090093954 @default.
- W4281874728 hasBestOaLocation W42818747281 @default.
- W4281874728 hasConcept C142724271 @default.
- W4281874728 hasConcept C15744967 @default.
- W4281874728 hasConcept C16568411 @default.
- W4281874728 hasConcept C169760540 @default.
- W4281874728 hasConcept C2777639682 @default.
- W4281874728 hasConcept C2778261627 @default.
- W4281874728 hasConcept C2779134260 @default.
- W4281874728 hasConcept C2780148635 @default.
- W4281874728 hasConcept C2780906641 @default.
- W4281874728 hasConcept C548259974 @default.
- W4281874728 hasConcept C71924100 @default.
- W4281874728 hasConceptScore W4281874728C142724271 @default.
- W4281874728 hasConceptScore W4281874728C15744967 @default.
- W4281874728 hasConceptScore W4281874728C16568411 @default.
- W4281874728 hasConceptScore W4281874728C169760540 @default.