Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281876090> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4281876090 endingPage "247" @default.
- W4281876090 startingPage "235" @default.
- W4281876090 abstract "Sentiment Analysis (SA) is one of the subfields in Natural Language Processing (NLP) which focuses on identification and extraction of opinions that exist in the text provided across reviews, social media, blogs, news, and so on. SA has the ability to handle the drastically-increasing unstructured text by transforming them into structured data with the help of NLP and open source tools. The current research work designs a novel Modified Red Deer Algorithm (MRDA) Extreme Learning Machine Sparse Autoencoder (ELMSAE) model for SA and classification. The proposed MRDA-ELMSAE technique initially performs preprocessing to transform the data into a compatible format. Moreover, TF-IDF vectorizer is employed in the extraction of features while ELMSAE model is applied in the classification of sentiments. Furthermore, optimal parameter tuning is done for ELMSAE model using MRDA technique. A wide range of simulation analyses was carried out and results from comparative analysis establish the enhanced efficiency of MRDA-ELMSAE technique against other recent techniques." @default.
- W4281876090 created "2022-06-13" @default.
- W4281876090 creator A5002855381 @default.
- W4281876090 creator A5011127003 @default.
- W4281876090 creator A5054901739 @default.
- W4281876090 creator A5066709473 @default.
- W4281876090 creator A5070901131 @default.
- W4281876090 creator A5072422698 @default.
- W4281876090 creator A5081180517 @default.
- W4281876090 date "2023-01-01" @default.
- W4281876090 modified "2023-10-14" @default.
- W4281876090 title "Intelligent Machine Learning with Metaheuristics Based Sentiment Analysis and Classification" @default.
- W4281876090 cites W2072322795 @default.
- W4281876090 cites W2242874043 @default.
- W4281876090 cites W2306941105 @default.
- W4281876090 cites W2590061102 @default.
- W4281876090 cites W2611614234 @default.
- W4281876090 cites W2687524069 @default.
- W4281876090 cites W2793894766 @default.
- W4281876090 cites W2897000837 @default.
- W4281876090 cites W2926264417 @default.
- W4281876090 cites W2929472605 @default.
- W4281876090 cites W2941002834 @default.
- W4281876090 cites W2982638854 @default.
- W4281876090 cites W2995797250 @default.
- W4281876090 cites W3010618814 @default.
- W4281876090 cites W3015647315 @default.
- W4281876090 cites W3100754052 @default.
- W4281876090 doi "https://doi.org/10.32604/csse.2023.024399" @default.
- W4281876090 hasPublicationYear "2023" @default.
- W4281876090 type Work @default.
- W4281876090 citedByCount "3" @default.
- W4281876090 countsByYear W42818760902023 @default.
- W4281876090 crossrefType "journal-article" @default.
- W4281876090 hasAuthorship W4281876090A5002855381 @default.
- W4281876090 hasAuthorship W4281876090A5011127003 @default.
- W4281876090 hasAuthorship W4281876090A5054901739 @default.
- W4281876090 hasAuthorship W4281876090A5066709473 @default.
- W4281876090 hasAuthorship W4281876090A5070901131 @default.
- W4281876090 hasAuthorship W4281876090A5072422698 @default.
- W4281876090 hasAuthorship W4281876090A5081180517 @default.
- W4281876090 hasBestOaLocation W42818760901 @default.
- W4281876090 hasConcept C101738243 @default.
- W4281876090 hasConcept C10551718 @default.
- W4281876090 hasConcept C108583219 @default.
- W4281876090 hasConcept C109718341 @default.
- W4281876090 hasConcept C116834253 @default.
- W4281876090 hasConcept C119857082 @default.
- W4281876090 hasConcept C124101348 @default.
- W4281876090 hasConcept C154945302 @default.
- W4281876090 hasConcept C204321447 @default.
- W4281876090 hasConcept C2780150128 @default.
- W4281876090 hasConcept C34736171 @default.
- W4281876090 hasConcept C41008148 @default.
- W4281876090 hasConcept C50644808 @default.
- W4281876090 hasConcept C59822182 @default.
- W4281876090 hasConcept C66402592 @default.
- W4281876090 hasConcept C86803240 @default.
- W4281876090 hasConceptScore W4281876090C101738243 @default.
- W4281876090 hasConceptScore W4281876090C10551718 @default.
- W4281876090 hasConceptScore W4281876090C108583219 @default.
- W4281876090 hasConceptScore W4281876090C109718341 @default.
- W4281876090 hasConceptScore W4281876090C116834253 @default.
- W4281876090 hasConceptScore W4281876090C119857082 @default.
- W4281876090 hasConceptScore W4281876090C124101348 @default.
- W4281876090 hasConceptScore W4281876090C154945302 @default.
- W4281876090 hasConceptScore W4281876090C204321447 @default.
- W4281876090 hasConceptScore W4281876090C2780150128 @default.
- W4281876090 hasConceptScore W4281876090C34736171 @default.
- W4281876090 hasConceptScore W4281876090C41008148 @default.
- W4281876090 hasConceptScore W4281876090C50644808 @default.
- W4281876090 hasConceptScore W4281876090C59822182 @default.
- W4281876090 hasConceptScore W4281876090C66402592 @default.
- W4281876090 hasConceptScore W4281876090C86803240 @default.
- W4281876090 hasIssue "1" @default.
- W4281876090 hasLocation W42818760901 @default.
- W4281876090 hasOpenAccess W4281876090 @default.
- W4281876090 hasPrimaryLocation W42818760901 @default.
- W4281876090 hasRelatedWork W2367545121 @default.
- W4281876090 hasRelatedWork W2373749036 @default.
- W4281876090 hasRelatedWork W2944636446 @default.
- W4281876090 hasRelatedWork W2952736244 @default.
- W4281876090 hasRelatedWork W3092506759 @default.
- W4281876090 hasRelatedWork W3192794374 @default.
- W4281876090 hasRelatedWork W4248881655 @default.
- W4281876090 hasRelatedWork W4281876090 @default.
- W4281876090 hasRelatedWork W4311788998 @default.
- W4281876090 hasRelatedWork W4384300587 @default.
- W4281876090 hasVolume "44" @default.
- W4281876090 isParatext "false" @default.
- W4281876090 isRetracted "false" @default.
- W4281876090 workType "article" @default.