Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281878192> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4281878192 abstract "Graph representation learning has attracted tremendous attention due to its remarkable performance in many real-world applications. However, prevailing supervised graph representation learning models for specific tasks often suffer from label sparsity issue as data labeling is always time and resource consuming. In light of this, few-shot learning on graphs (FSLG), which combines the strengths of graph representation learning and few-shot learning together, has been proposed to tackle the performance degradation in face of limited annotated data challenge. There have been many studies working on FSLG recently. In this paper, we comprehensively survey these work in the form of a series of methods and applications. Specifically, we first introduce FSLG challenges and bases, then categorize and summarize existing work of FSLG in terms of three major graph mining tasks at different granularity levels, i.e., node, edge, and graph. Finally, we share our thoughts on some future research directions of FSLG. The authors of this survey have contributed significantly to the AI literature on FSLG over the last few years." @default.
- W4281878192 created "2022-06-13" @default.
- W4281878192 creator A5000755750 @default.
- W4281878192 creator A5012502919 @default.
- W4281878192 creator A5013881064 @default.
- W4281878192 creator A5022275632 @default.
- W4281878192 creator A5027601906 @default.
- W4281878192 creator A5029588473 @default.
- W4281878192 creator A5044455276 @default.
- W4281878192 date "2022-07-01" @default.
- W4281878192 modified "2023-10-14" @default.
- W4281878192 title "Few-Shot Learning on Graphs" @default.
- W4281878192 doi "https://doi.org/10.24963/ijcai.2022/785" @default.
- W4281878192 hasPublicationYear "2022" @default.
- W4281878192 type Work @default.
- W4281878192 citedByCount "0" @default.
- W4281878192 crossrefType "proceedings-article" @default.
- W4281878192 hasAuthorship W4281878192A5000755750 @default.
- W4281878192 hasAuthorship W4281878192A5012502919 @default.
- W4281878192 hasAuthorship W4281878192A5013881064 @default.
- W4281878192 hasAuthorship W4281878192A5022275632 @default.
- W4281878192 hasAuthorship W4281878192A5027601906 @default.
- W4281878192 hasAuthorship W4281878192A5029588473 @default.
- W4281878192 hasAuthorship W4281878192A5044455276 @default.
- W4281878192 hasBestOaLocation W42818781921 @default.
- W4281878192 hasConcept C111919701 @default.
- W4281878192 hasConcept C119857082 @default.
- W4281878192 hasConcept C132525143 @default.
- W4281878192 hasConcept C154945302 @default.
- W4281878192 hasConcept C177774035 @default.
- W4281878192 hasConcept C2522767166 @default.
- W4281878192 hasConcept C41008148 @default.
- W4281878192 hasConcept C59404180 @default.
- W4281878192 hasConcept C80444323 @default.
- W4281878192 hasConcept C94124525 @default.
- W4281878192 hasConceptScore W4281878192C111919701 @default.
- W4281878192 hasConceptScore W4281878192C119857082 @default.
- W4281878192 hasConceptScore W4281878192C132525143 @default.
- W4281878192 hasConceptScore W4281878192C154945302 @default.
- W4281878192 hasConceptScore W4281878192C177774035 @default.
- W4281878192 hasConceptScore W4281878192C2522767166 @default.
- W4281878192 hasConceptScore W4281878192C41008148 @default.
- W4281878192 hasConceptScore W4281878192C59404180 @default.
- W4281878192 hasConceptScore W4281878192C80444323 @default.
- W4281878192 hasConceptScore W4281878192C94124525 @default.
- W4281878192 hasLocation W42818781921 @default.
- W4281878192 hasOpenAccess W4281878192 @default.
- W4281878192 hasPrimaryLocation W42818781921 @default.
- W4281878192 hasRelatedWork W2891961174 @default.
- W4281878192 hasRelatedWork W2908875379 @default.
- W4281878192 hasRelatedWork W2972984751 @default.
- W4281878192 hasRelatedWork W3087493185 @default.
- W4281878192 hasRelatedWork W3158586592 @default.
- W4281878192 hasRelatedWork W4206762304 @default.
- W4281878192 hasRelatedWork W4213225422 @default.
- W4281878192 hasRelatedWork W4220705178 @default.
- W4281878192 hasRelatedWork W4221136938 @default.
- W4281878192 hasRelatedWork W4315777907 @default.
- W4281878192 isParatext "false" @default.
- W4281878192 isRetracted "false" @default.
- W4281878192 workType "article" @default.