Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281904752> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4281904752 abstract "Natural Language Processing (NLP) can analyze and classify the growing number of expressed opinions and feelings of online texts and quickly get the required feedback. The technique of automatically labeling a textual document with the most appropriate collection of labels is known as text classification, whereas supervised text classifiers require extensive human expertise and labeling efforts. This paper seeks to build a multi-labeled Arabic dataset by labeling an Arabic Covid-19 Tweet to two groups based on their lexical features: related topic and associated sentiment. An extensive dataset was created from Twitter posts to achieve this purpose. There are over 32k multi-labeled tweets in the dataset. The dataset will be made freely available to the Arabic computational linguistics research community. This work used both traditional machine learning approaches and a deep-learning approach to investigate this dataset’s performance. This paper demonstrates that traditional ML approaches provide higher accuracy with almost stable performance when experienced on the Twitter dataset for sentiment analysis and topic classification." @default.
- W4281904752 created "2022-06-13" @default.
- W4281904752 creator A5021138088 @default.
- W4281904752 creator A5048971703 @default.
- W4281904752 creator A5081145748 @default.
- W4281904752 date "2022-05-25" @default.
- W4281904752 modified "2023-09-29" @default.
- W4281904752 title "Multi-labeled Dataset of Arabic COVID-19 Tweets for Topic-Based Sentiment Classifications" @default.
- W4281904752 cites W1978000310 @default.
- W4281904752 cites W2018079881 @default.
- W4281904752 cites W2043287290 @default.
- W4281904752 cites W2148143831 @default.
- W4281904752 cites W2737990573 @default.
- W4281904752 cites W2796021798 @default.
- W4281904752 cites W2909182718 @default.
- W4281904752 cites W2947495225 @default.
- W4281904752 cites W2962686197 @default.
- W4281904752 cites W2963024716 @default.
- W4281904752 cites W3088352144 @default.
- W4281904752 cites W3109925151 @default.
- W4281904752 cites W3152332785 @default.
- W4281904752 cites W3155260882 @default.
- W4281904752 cites W3188037342 @default.
- W4281904752 cites W4212883601 @default.
- W4281904752 cites W4225574166 @default.
- W4281904752 doi "https://doi.org/10.1109/eais51927.2022.9787700" @default.
- W4281904752 hasPublicationYear "2022" @default.
- W4281904752 type Work @default.
- W4281904752 citedByCount "0" @default.
- W4281904752 crossrefType "proceedings-article" @default.
- W4281904752 hasAuthorship W4281904752A5021138088 @default.
- W4281904752 hasAuthorship W4281904752A5048971703 @default.
- W4281904752 hasAuthorship W4281904752A5081145748 @default.
- W4281904752 hasConcept C138885662 @default.
- W4281904752 hasConcept C142724271 @default.
- W4281904752 hasConcept C154945302 @default.
- W4281904752 hasConcept C155092808 @default.
- W4281904752 hasConcept C204321447 @default.
- W4281904752 hasConcept C23123220 @default.
- W4281904752 hasConcept C2779134260 @default.
- W4281904752 hasConcept C3008058167 @default.
- W4281904752 hasConcept C41008148 @default.
- W4281904752 hasConcept C41895202 @default.
- W4281904752 hasConcept C524204448 @default.
- W4281904752 hasConcept C66402592 @default.
- W4281904752 hasConcept C71924100 @default.
- W4281904752 hasConcept C96455323 @default.
- W4281904752 hasConceptScore W4281904752C138885662 @default.
- W4281904752 hasConceptScore W4281904752C142724271 @default.
- W4281904752 hasConceptScore W4281904752C154945302 @default.
- W4281904752 hasConceptScore W4281904752C155092808 @default.
- W4281904752 hasConceptScore W4281904752C204321447 @default.
- W4281904752 hasConceptScore W4281904752C23123220 @default.
- W4281904752 hasConceptScore W4281904752C2779134260 @default.
- W4281904752 hasConceptScore W4281904752C3008058167 @default.
- W4281904752 hasConceptScore W4281904752C41008148 @default.
- W4281904752 hasConceptScore W4281904752C41895202 @default.
- W4281904752 hasConceptScore W4281904752C524204448 @default.
- W4281904752 hasConceptScore W4281904752C66402592 @default.
- W4281904752 hasConceptScore W4281904752C71924100 @default.
- W4281904752 hasConceptScore W4281904752C96455323 @default.
- W4281904752 hasLocation W42819047521 @default.
- W4281904752 hasOpenAccess W4281904752 @default.
- W4281904752 hasPrimaryLocation W42819047521 @default.
- W4281904752 hasRelatedWork W2250245759 @default.
- W4281904752 hasRelatedWork W2288974521 @default.
- W4281904752 hasRelatedWork W2767246187 @default.
- W4281904752 hasRelatedWork W3015597294 @default.
- W4281904752 hasRelatedWork W3023663781 @default.
- W4281904752 hasRelatedWork W3081766916 @default.
- W4281904752 hasRelatedWork W4281904752 @default.
- W4281904752 hasRelatedWork W4293071540 @default.
- W4281904752 hasRelatedWork W4301311969 @default.
- W4281904752 hasRelatedWork W82235850 @default.
- W4281904752 isParatext "false" @default.
- W4281904752 isRetracted "false" @default.
- W4281904752 workType "article" @default.