Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281905908> ?p ?o ?g. }
- W4281905908 endingPage "21" @default.
- W4281905908 startingPage "14" @default.
- W4281905908 abstract "Pulmonary embolism (PE) is a life-threatening condition associated with ~10% of deaths of hospitalized patients. Machine learning algorithms (MLAs) which predict the onset of pulmonary embolism (PE) could enable earlier treatment and improve patient outcomes. However, the extent to which they generalize to broader patient populations impacts their clinical utility.To conduct the first large-scale external validation of a machine learning-based PE prediction model which uses EHR data from the first three hours of a patient's hospital stay to predict the occurrence of PE within the next 10 days of the inpatient stay.This retrospective study included approximately two million adult hospital admissions across 44 medical institutions in the US from 2011 to 2017. Demographics, vital signs, and lab tests from adult inpatients at 12 institutions (n = 331,268; 3.3% PE positive) were used for training an XGBoost model. External validation of the model was conducted on patient populations from each of 32 medical institutions (total n = 1,660,715; 3.7% PE positive) without retraining. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). Backward elimination regression was used to identify correlations between characteristics of the external validation sets and AUROC.The model performed well (AUROC = 0.87) on the 20% hold-out subset of the training set. Despite demographic differences between the 32 external validation populations (percent PE positive: min = 1.54%, max = 6.47%), without retraining, the model had excellent discrimination, with a mean AUROC of 0.88 (min = 0.79, max = 0.93). Fixing sensitivity at 0.80, the model had a mean specificity of 0.85 (min = 0.64, max = 0.93). Backward elimination regression identified a negative association (β = -0.015, p < 0.001) between the percentage of PE positive encounters and AUROC.A PE prediction model performed remarkably well across 32 different external patient populations without retraining and despite significant differences in demographic characteristics, demonstrating its generalizability and potential as a clinical decision support tool to aid PE detection and improve patient outcomes in a clinical setting." @default.
- W4281905908 created "2022-06-13" @default.
- W4281905908 creator A5005253495 @default.
- W4281905908 creator A5014096226 @default.
- W4281905908 creator A5018209015 @default.
- W4281905908 creator A5020898759 @default.
- W4281905908 creator A5023008666 @default.
- W4281905908 creator A5031045321 @default.
- W4281905908 creator A5062327634 @default.
- W4281905908 date "2022-08-01" @default.
- W4281905908 modified "2023-10-16" @default.
- W4281905908 title "Massive external validation of a machine learning algorithm to predict pulmonary embolism in hospitalized patients" @default.
- W4281905908 cites W1511757448 @default.
- W4281905908 cites W1966534025 @default.
- W4281905908 cites W1968098708 @default.
- W4281905908 cites W1992661527 @default.
- W4281905908 cites W1994890275 @default.
- W4281905908 cites W2005416037 @default.
- W4281905908 cites W2019242730 @default.
- W4281905908 cites W2042636497 @default.
- W4281905908 cites W2054730686 @default.
- W4281905908 cites W2059089864 @default.
- W4281905908 cites W2076506432 @default.
- W4281905908 cites W2083225817 @default.
- W4281905908 cites W2100924055 @default.
- W4281905908 cites W2102301979 @default.
- W4281905908 cites W2117983655 @default.
- W4281905908 cites W2122825543 @default.
- W4281905908 cites W2131099415 @default.
- W4281905908 cites W2132381095 @default.
- W4281905908 cites W2133619004 @default.
- W4281905908 cites W2142092434 @default.
- W4281905908 cites W2146094182 @default.
- W4281905908 cites W2156917466 @default.
- W4281905908 cites W2157822705 @default.
- W4281905908 cites W2163723714 @default.
- W4281905908 cites W2171602154 @default.
- W4281905908 cites W2225937646 @default.
- W4281905908 cites W2313923699 @default.
- W4281905908 cites W2340367584 @default.
- W4281905908 cites W2372800617 @default.
- W4281905908 cites W2521518431 @default.
- W4281905908 cites W2622299066 @default.
- W4281905908 cites W2766207659 @default.
- W4281905908 cites W2799668418 @default.
- W4281905908 cites W2887355428 @default.
- W4281905908 cites W2893817571 @default.
- W4281905908 cites W2912681069 @default.
- W4281905908 cites W2940553617 @default.
- W4281905908 cites W3011188024 @default.
- W4281905908 cites W3011693960 @default.
- W4281905908 cites W3021150726 @default.
- W4281905908 cites W3023919040 @default.
- W4281905908 cites W3044716907 @default.
- W4281905908 cites W3048873596 @default.
- W4281905908 cites W3090219715 @default.
- W4281905908 cites W3097374997 @default.
- W4281905908 cites W3111251164 @default.
- W4281905908 cites W3135751641 @default.
- W4281905908 cites W3173126985 @default.
- W4281905908 cites W3174786846 @default.
- W4281905908 cites W4200449190 @default.
- W4281905908 cites W795223360 @default.
- W4281905908 cites W864668651 @default.
- W4281905908 cites W2989833702 @default.
- W4281905908 doi "https://doi.org/10.1016/j.thromres.2022.05.016" @default.
- W4281905908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35679633" @default.
- W4281905908 hasPublicationYear "2022" @default.
- W4281905908 type Work @default.
- W4281905908 citedByCount "1" @default.
- W4281905908 countsByYear W42819059082023 @default.
- W4281905908 crossrefType "journal-article" @default.
- W4281905908 hasAuthorship W4281905908A5005253495 @default.
- W4281905908 hasAuthorship W4281905908A5014096226 @default.
- W4281905908 hasAuthorship W4281905908A5018209015 @default.
- W4281905908 hasAuthorship W4281905908A5020898759 @default.
- W4281905908 hasAuthorship W4281905908A5023008666 @default.
- W4281905908 hasAuthorship W4281905908A5031045321 @default.
- W4281905908 hasAuthorship W4281905908A5062327634 @default.
- W4281905908 hasBestOaLocation W42819059081 @default.
- W4281905908 hasConcept C11413529 @default.
- W4281905908 hasConcept C119857082 @default.
- W4281905908 hasConcept C126322002 @default.
- W4281905908 hasConcept C144024400 @default.
- W4281905908 hasConcept C144133560 @default.
- W4281905908 hasConcept C149923435 @default.
- W4281905908 hasConcept C154945302 @default.
- W4281905908 hasConcept C155202549 @default.
- W4281905908 hasConcept C2776265017 @default.
- W4281905908 hasConcept C2778712577 @default.
- W4281905908 hasConcept C2780084366 @default.
- W4281905908 hasConcept C41008148 @default.
- W4281905908 hasConcept C58471807 @default.
- W4281905908 hasConcept C71924100 @default.
- W4281905908 hasConceptScore W4281905908C11413529 @default.
- W4281905908 hasConceptScore W4281905908C119857082 @default.
- W4281905908 hasConceptScore W4281905908C126322002 @default.
- W4281905908 hasConceptScore W4281905908C144024400 @default.