Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281907712> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4281907712 endingPage "10" @default.
- W4281907712 startingPage "1" @default.
- W4281907712 abstract "Kidneys are vital organs in the human body, and their effective functioning determines life quality. Chronic kidney illness is a kind of nephrotic syndrome in which the kidneys’ capacity to cope normally steadily deteriorates and remains asymptomatic for a long period as the disease progresses. An early CKD detection would help the patient recover faster and easier. Using an artificial intelligence system that can effectively aid in CKD detection in time and suggest the required food nutrition for its treatment and recovery would reap immense benefits for healthcare professionals as well as the patient. ML is a part of AI technology that has been used for effective medical development. This technology helps physicians in the accurate diagnosis of kidney disease and helps in effective treatment prediction by recommending required nutrition. The present research relates to the use of ML in proper kidney disease diagnosis and food recommendations for treatment accordingly. A correlation analysis has been done in this research to observe the strength of ML using the effective finding for renal malfunctioning and identifying the best food products that could help in its treatment and recovery. IBM SPSS version 26 has been used for this research. The correlation analysis has been done to observe the impact of eight independent variables that are age, gender, blood sugar, serum albumin, creatinine, potassium, bacteria, and pus secretion on the two dependent variables that are the risk of CKD occurrence and ML accuracy. The results have exposed that the autonomous values consist of a strong positive correlation with the dependent variable ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>p</mi> <mo><</mo> <mn>0.005</mn> </math> ). The statistical significance values have proved that the dependent values are statistically significant (0.001). The value of ML accuracy at a 95% confidence level has been observed at 88.85%, and the CKD occurrence value is 86.95%. The results have proved that the ML algorithm detects the risk of CKD occurrence accurately in each stage via analyzing blood sugar, creatinine, and potassium levels. The result also shows that the risk of CKD enhances with an increase in age." @default.
- W4281907712 created "2022-06-13" @default.
- W4281907712 creator A5001374232 @default.
- W4281907712 creator A5017466976 @default.
- W4281907712 creator A5059528930 @default.
- W4281907712 creator A5065619505 @default.
- W4281907712 creator A5077307767 @default.
- W4281907712 creator A5080085667 @default.
- W4281907712 date "2022-05-29" @default.
- W4281907712 modified "2023-10-16" @default.
- W4281907712 title "The Emerging Role of Implementing Machine Learning in Food Recommendation for Chronic Kidney Diseases Using Correlation Analysis" @default.
- W4281907712 cites W1990663720 @default.
- W4281907712 cites W2046521115 @default.
- W4281907712 cites W2902720064 @default.
- W4281907712 cites W2940596626 @default.
- W4281907712 cites W2942796683 @default.
- W4281907712 cites W2955086442 @default.
- W4281907712 cites W2968847082 @default.
- W4281907712 cites W2982657588 @default.
- W4281907712 cites W2988194888 @default.
- W4281907712 cites W2996908335 @default.
- W4281907712 cites W2997177758 @default.
- W4281907712 cites W3004678548 @default.
- W4281907712 cites W3007971933 @default.
- W4281907712 cites W3015066510 @default.
- W4281907712 cites W3017213311 @default.
- W4281907712 cites W3047564199 @default.
- W4281907712 cites W3082215335 @default.
- W4281907712 cites W3109379736 @default.
- W4281907712 cites W3114299424 @default.
- W4281907712 cites W3130960929 @default.
- W4281907712 cites W3133350918 @default.
- W4281907712 cites W3153045320 @default.
- W4281907712 cites W3172921504 @default.
- W4281907712 cites W3191606084 @default.
- W4281907712 doi "https://doi.org/10.1155/2022/7176261" @default.
- W4281907712 hasPublicationYear "2022" @default.
- W4281907712 type Work @default.
- W4281907712 citedByCount "0" @default.
- W4281907712 crossrefType "journal-article" @default.
- W4281907712 hasAuthorship W4281907712A5001374232 @default.
- W4281907712 hasAuthorship W4281907712A5017466976 @default.
- W4281907712 hasAuthorship W4281907712A5059528930 @default.
- W4281907712 hasAuthorship W4281907712A5065619505 @default.
- W4281907712 hasAuthorship W4281907712A5077307767 @default.
- W4281907712 hasAuthorship W4281907712A5080085667 @default.
- W4281907712 hasBestOaLocation W42819077121 @default.
- W4281907712 hasConcept C126322002 @default.
- W4281907712 hasConcept C177713679 @default.
- W4281907712 hasConcept C2777910003 @default.
- W4281907712 hasConcept C2778653478 @default.
- W4281907712 hasConcept C2779134260 @default.
- W4281907712 hasConcept C2780306776 @default.
- W4281907712 hasConcept C71924100 @default.
- W4281907712 hasConceptScore W4281907712C126322002 @default.
- W4281907712 hasConceptScore W4281907712C177713679 @default.
- W4281907712 hasConceptScore W4281907712C2777910003 @default.
- W4281907712 hasConceptScore W4281907712C2778653478 @default.
- W4281907712 hasConceptScore W4281907712C2779134260 @default.
- W4281907712 hasConceptScore W4281907712C2780306776 @default.
- W4281907712 hasConceptScore W4281907712C71924100 @default.
- W4281907712 hasLocation W42819077121 @default.
- W4281907712 hasOpenAccess W4281907712 @default.
- W4281907712 hasPrimaryLocation W42819077121 @default.
- W4281907712 hasRelatedWork W1540807578 @default.
- W4281907712 hasRelatedWork W1718748228 @default.
- W4281907712 hasRelatedWork W2016976166 @default.
- W4281907712 hasRelatedWork W2114905932 @default.
- W4281907712 hasRelatedWork W2115025560 @default.
- W4281907712 hasRelatedWork W2155364172 @default.
- W4281907712 hasRelatedWork W2167417816 @default.
- W4281907712 hasRelatedWork W2355710138 @default.
- W4281907712 hasRelatedWork W2888428943 @default.
- W4281907712 hasRelatedWork W2919291229 @default.
- W4281907712 hasVolume "2022" @default.
- W4281907712 isParatext "false" @default.
- W4281907712 isRetracted "false" @default.
- W4281907712 workType "article" @default.