Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281917143> ?p ?o ?g. }
- W4281917143 abstract "Few-shot and cross-domain land use scene classification methods propose solutions to classify unseen classes or un-seen visual distributions, but are hardly applicable to real-world situations due to restrictive assumptions. Few-shot methods involve episodic training on restrictive training subsets with small feature extractors, while cross-domain methods are only applied to common classes. The underlying challenge remains open: can we accurately classify new scenes on new datasets? In this paper, we propose a new framework for few-shot, cross-domain classification. Our retrieval-inspired approach <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sup> exploits the interrelations in both the training and testing data to output class labels using compact descriptors. Results show that our method can accurately produce land-use predictions on unseen datasets and unseen classes, going beyond the traditional few-shot or cross-domain formulation, and allowing cross-dataset training." @default.
- W4281917143 created "2022-06-13" @default.
- W4281917143 creator A5041561153 @default.
- W4281917143 creator A5072281305 @default.
- W4281917143 creator A5078026673 @default.
- W4281917143 date "2022-06-01" @default.
- W4281917143 modified "2023-10-02" @default.
- W4281917143 title "Cross-dataset Learning for Generalizable Land Use Scene Classification" @default.
- W4281917143 cites W1570613334 @default.
- W4281917143 cites W1861492603 @default.
- W4281917143 cites W1958291604 @default.
- W4281917143 cites W1980038761 @default.
- W4281917143 cites W2076434944 @default.
- W4281917143 cites W2108598243 @default.
- W4281917143 cites W2142992480 @default.
- W4281917143 cites W2194775991 @default.
- W4281917143 cites W2294802479 @default.
- W4281917143 cites W2512351403 @default.
- W4281917143 cites W2544587078 @default.
- W4281917143 cites W2571356571 @default.
- W4281917143 cites W2577537809 @default.
- W4281917143 cites W2584637367 @default.
- W4281917143 cites W2610614780 @default.
- W4281917143 cites W2626107033 @default.
- W4281917143 cites W2660018007 @default.
- W4281917143 cites W2783165089 @default.
- W4281917143 cites W2792088634 @default.
- W4281917143 cites W2808436940 @default.
- W4281917143 cites W2890274053 @default.
- W4281917143 cites W2890732922 @default.
- W4281917143 cites W2898204262 @default.
- W4281917143 cites W2903106696 @default.
- W4281917143 cites W2917187459 @default.
- W4281917143 cites W2963154697 @default.
- W4281917143 cites W2963588253 @default.
- W4281917143 cites W2989738275 @default.
- W4281917143 cites W2990519439 @default.
- W4281917143 cites W3011801827 @default.
- W4281917143 cites W3012326541 @default.
- W4281917143 cites W3034587791 @default.
- W4281917143 cites W3064432655 @default.
- W4281917143 cites W3103856189 @default.
- W4281917143 cites W3105577662 @default.
- W4281917143 cites W3109485382 @default.
- W4281917143 cites W3125493368 @default.
- W4281917143 cites W3128125668 @default.
- W4281917143 cites W3206694203 @default.
- W4281917143 cites W4200265866 @default.
- W4281917143 doi "https://doi.org/10.1109/cvprw56347.2022.00144" @default.
- W4281917143 hasPublicationYear "2022" @default.
- W4281917143 type Work @default.
- W4281917143 citedByCount "0" @default.
- W4281917143 crossrefType "proceedings-article" @default.
- W4281917143 hasAuthorship W4281917143A5041561153 @default.
- W4281917143 hasAuthorship W4281917143A5072281305 @default.
- W4281917143 hasAuthorship W4281917143A5078026673 @default.
- W4281917143 hasBestOaLocation W42819171433 @default.
- W4281917143 hasConcept C119857082 @default.
- W4281917143 hasConcept C134306372 @default.
- W4281917143 hasConcept C138885662 @default.
- W4281917143 hasConcept C153180895 @default.
- W4281917143 hasConcept C154945302 @default.
- W4281917143 hasConcept C165696696 @default.
- W4281917143 hasConcept C178790620 @default.
- W4281917143 hasConcept C185592680 @default.
- W4281917143 hasConcept C2776401178 @default.
- W4281917143 hasConcept C2777212361 @default.
- W4281917143 hasConcept C2778344882 @default.
- W4281917143 hasConcept C33923547 @default.
- W4281917143 hasConcept C36503486 @default.
- W4281917143 hasConcept C38652104 @default.
- W4281917143 hasConcept C41008148 @default.
- W4281917143 hasConcept C41895202 @default.
- W4281917143 hasConcept C51632099 @default.
- W4281917143 hasConcept C52622490 @default.
- W4281917143 hasConceptScore W4281917143C119857082 @default.
- W4281917143 hasConceptScore W4281917143C134306372 @default.
- W4281917143 hasConceptScore W4281917143C138885662 @default.
- W4281917143 hasConceptScore W4281917143C153180895 @default.
- W4281917143 hasConceptScore W4281917143C154945302 @default.
- W4281917143 hasConceptScore W4281917143C165696696 @default.
- W4281917143 hasConceptScore W4281917143C178790620 @default.
- W4281917143 hasConceptScore W4281917143C185592680 @default.
- W4281917143 hasConceptScore W4281917143C2776401178 @default.
- W4281917143 hasConceptScore W4281917143C2777212361 @default.
- W4281917143 hasConceptScore W4281917143C2778344882 @default.
- W4281917143 hasConceptScore W4281917143C33923547 @default.
- W4281917143 hasConceptScore W4281917143C36503486 @default.
- W4281917143 hasConceptScore W4281917143C38652104 @default.
- W4281917143 hasConceptScore W4281917143C41008148 @default.
- W4281917143 hasConceptScore W4281917143C41895202 @default.
- W4281917143 hasConceptScore W4281917143C51632099 @default.
- W4281917143 hasConceptScore W4281917143C52622490 @default.
- W4281917143 hasLocation W42819171431 @default.
- W4281917143 hasLocation W42819171432 @default.
- W4281917143 hasLocation W42819171433 @default.
- W4281917143 hasOpenAccess W4281917143 @default.
- W4281917143 hasPrimaryLocation W42819171431 @default.
- W4281917143 hasRelatedWork W1964120219 @default.
- W4281917143 hasRelatedWork W2000165426 @default.