Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281920295> ?p ?o ?g. }
- W4281920295 endingPage "e0269259" @default.
- W4281920295 startingPage "e0269259" @default.
- W4281920295 abstract "Automatic estimation of the poses of dairy cows over a long period can provide relevant information regarding their status and well-being in precision farming. Due to appearance similarity, cow pose estimation is challenging. To monitor the health of dairy cows in actual farm environments, a multicow pose estimation algorithm was proposed in this study. First, a monitoring system was established at a dairy cow breeding site, and 175 surveillance videos of 10 different cows were used as raw data to construct object detection and pose estimation data sets. To achieve the detection of multiple cows, the You Only Look Once (YOLO)v4 model based on CSPDarkNet53 was built and fine-tuned to output the bounding box for further pose estimation. On the test set of 400 images including single and multiple cows throughout the whole day, the average precision (AP) reached 94.58%. Second, the keypoint heatmaps and part affinity field (PAF) were extracted to match the keypoints of the same cow based on the real-time multiperson 2D pose detection model. To verify the performance of the algorithm, 200 single-object images and 200 dual-object images with occlusions were tested under different light conditions. The test results showed that the AP of leg keypoints was the highest, reaching 91.6%, regardless of day or night and single cows or double cows. This was followed by the AP values of the back, neck and head, sequentially. The AP of single cow pose estimation was 85% during the day and 78.1% at night, compared to double cows with occlusion, for which the values were 74.3% and 71.6%, respectively. The keypoint detection rate decreased when the occlusion was severe. However, in actual cow breeding sites, cows are seldom strongly occluded. Finally, a pose classification network was built to estimate the three typical poses (standing, walking and lying) of cows based on the extracted cow skeleton in the bounding box, achieving precision of 91.67%, 92.97% and 99.23%, respectively. The results showed that the algorithm proposed in this study exhibited a relatively high detection rate. Therefore, the proposed method can provide a theoretical reference for animal pose estimation in large-scale precision livestock farming." @default.
- W4281920295 created "2022-06-13" @default.
- W4281920295 creator A5006894242 @default.
- W4281920295 creator A5012793150 @default.
- W4281920295 creator A5019254415 @default.
- W4281920295 creator A5025918703 @default.
- W4281920295 creator A5032761050 @default.
- W4281920295 creator A5069465291 @default.
- W4281920295 date "2022-06-03" @default.
- W4281920295 modified "2023-10-10" @default.
- W4281920295 title "Multicow pose estimation based on keypoint extraction" @default.
- W4281920295 cites W2518965973 @default.
- W4281920295 cites W2559085405 @default.
- W4281920295 cites W2613568213 @default.
- W4281920295 cites W2791489312 @default.
- W4281920295 cites W2795167049 @default.
- W4281920295 cites W2887114371 @default.
- W4281920295 cites W2913126466 @default.
- W4281920295 cites W2941352015 @default.
- W4281920295 cites W2952956973 @default.
- W4281920295 cites W2962730651 @default.
- W4281920295 cites W2962954622 @default.
- W4281920295 cites W2964304707 @default.
- W4281920295 cites W3000032106 @default.
- W4281920295 cites W3007508619 @default.
- W4281920295 cites W3011254899 @default.
- W4281920295 cites W3014891935 @default.
- W4281920295 cites W3037784100 @default.
- W4281920295 cites W3048388384 @default.
- W4281920295 cites W3082044205 @default.
- W4281920295 cites W3098728175 @default.
- W4281920295 cites W3110255383 @default.
- W4281920295 cites W3113186360 @default.
- W4281920295 cites W3127796082 @default.
- W4281920295 cites W3157683243 @default.
- W4281920295 cites W3165870449 @default.
- W4281920295 cites W3171326146 @default.
- W4281920295 cites W4236727210 @default.
- W4281920295 doi "https://doi.org/10.1371/journal.pone.0269259" @default.
- W4281920295 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35657811" @default.
- W4281920295 hasPublicationYear "2022" @default.
- W4281920295 type Work @default.
- W4281920295 citedByCount "5" @default.
- W4281920295 countsByYear W42819202952022 @default.
- W4281920295 countsByYear W42819202952023 @default.
- W4281920295 crossrefType "journal-article" @default.
- W4281920295 hasAuthorship W4281920295A5006894242 @default.
- W4281920295 hasAuthorship W4281920295A5012793150 @default.
- W4281920295 hasAuthorship W4281920295A5019254415 @default.
- W4281920295 hasAuthorship W4281920295A5025918703 @default.
- W4281920295 hasAuthorship W4281920295A5032761050 @default.
- W4281920295 hasAuthorship W4281920295A5069465291 @default.
- W4281920295 hasBestOaLocation W42819202951 @default.
- W4281920295 hasConcept C103278499 @default.
- W4281920295 hasConcept C115961682 @default.
- W4281920295 hasConcept C147037132 @default.
- W4281920295 hasConcept C153180895 @default.
- W4281920295 hasConcept C154945302 @default.
- W4281920295 hasConcept C162324750 @default.
- W4281920295 hasConcept C187736073 @default.
- W4281920295 hasConcept C2992940123 @default.
- W4281920295 hasConcept C31903555 @default.
- W4281920295 hasConcept C31972630 @default.
- W4281920295 hasConcept C33923547 @default.
- W4281920295 hasConcept C41008148 @default.
- W4281920295 hasConcept C52102323 @default.
- W4281920295 hasConcept C86803240 @default.
- W4281920295 hasConcept C96250715 @default.
- W4281920295 hasConceptScore W4281920295C103278499 @default.
- W4281920295 hasConceptScore W4281920295C115961682 @default.
- W4281920295 hasConceptScore W4281920295C147037132 @default.
- W4281920295 hasConceptScore W4281920295C153180895 @default.
- W4281920295 hasConceptScore W4281920295C154945302 @default.
- W4281920295 hasConceptScore W4281920295C162324750 @default.
- W4281920295 hasConceptScore W4281920295C187736073 @default.
- W4281920295 hasConceptScore W4281920295C2992940123 @default.
- W4281920295 hasConceptScore W4281920295C31903555 @default.
- W4281920295 hasConceptScore W4281920295C31972630 @default.
- W4281920295 hasConceptScore W4281920295C33923547 @default.
- W4281920295 hasConceptScore W4281920295C41008148 @default.
- W4281920295 hasConceptScore W4281920295C52102323 @default.
- W4281920295 hasConceptScore W4281920295C86803240 @default.
- W4281920295 hasConceptScore W4281920295C96250715 @default.
- W4281920295 hasFunder F4320321001 @default.
- W4281920295 hasIssue "6" @default.
- W4281920295 hasLocation W42819202951 @default.
- W4281920295 hasLocation W42819202952 @default.
- W4281920295 hasLocation W42819202953 @default.
- W4281920295 hasOpenAccess W4281920295 @default.
- W4281920295 hasPrimaryLocation W42819202951 @default.
- W4281920295 hasRelatedWork W1490793564 @default.
- W4281920295 hasRelatedWork W2058718607 @default.
- W4281920295 hasRelatedWork W2123263858 @default.
- W4281920295 hasRelatedWork W2364404923 @default.
- W4281920295 hasRelatedWork W2938619957 @default.
- W4281920295 hasRelatedWork W3127959533 @default.
- W4281920295 hasRelatedWork W4221158788 @default.
- W4281920295 hasRelatedWork W4288374355 @default.