Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281931617> ?p ?o ?g. }
- W4281931617 endingPage "113110" @default.
- W4281931617 startingPage "113110" @default.
- W4281931617 abstract "The use of night-time livestock enclosures, often referred to as “bomas”, “corrals”, or “kraals”, is a common practice across African rangelands. Bomas protect livestock from predation by wildlife and potential theft. Due to the concentration of animal faeces inside bomas, they not only become nutrient-rich patches that can add to biodiversity, but also hotspots for the emission of nitrous oxide (N2O), an important greenhouse gas, especially when animals are kept inside for long periods. To provide an accurate estimate of such emissions for wider landscapes, bomas need to be accounted for. Moreover, initial experiments indicated that more frequent shifts in the boma locations could help to reduce N2O emissions. This stresses the need for better understanding where bomas are located, their numbers, as well as when they are actively used. Given the recent advances in satellite technology, resulting in high-frequent spectral measurements at fine spatial resolution, solutions to address these needs are now within reach. This study is a first effort to map and monitor the appearance of bomas with the use of satellite image time series. Our main dataset was a dense times series of 3 m resolution PlanetScope multispectral imagery. In addition, a reference dataset of boma and non-boma locations was created using GPS-collar tracking data and 0.5 m resolution Pléiades imagery. The reduction of vegetation cover and increase of organic material following boma installation result in typical spectral changes when contrasted against its surroundings. Based on these spectral changes we devised an empirical approach to infer approximate boma installation dates from PlanetScope's near infrared (NIR) band and used our reference dataset for setting optimal parameter values. A NIR spatial difference index resulted in clear temporal patterns, which were more apparent during the wet season. At landscape scale our approach reveals clear spatio-temporal patterns of boma installation, which could not be revealed from less frequent sub-meter resolution imagery alone. While further improvements are possible, we show that small-sized (150–500 m2) temporary surface changes, such as those that occur when pastoralists use mobile bomas, can be detected with dense image time series like those offered by the PlanetScope constellation. In future, this could lead to better assessment of a) spatio-temporal livestock distribution, b) the contribution of bomas to N2O emissions and soil fertility at landscape scale, and c) the uptake of enclosure rotation practices at large spatial scales." @default.
- W4281931617 created "2022-06-13" @default.
- W4281931617 creator A5011061423 @default.
- W4281931617 creator A5037139982 @default.
- W4281931617 creator A5043411772 @default.
- W4281931617 creator A5075947380 @default.
- W4281931617 creator A5077770020 @default.
- W4281931617 creator A5080012446 @default.
- W4281931617 creator A5081604177 @default.
- W4281931617 creator A5089521753 @default.
- W4281931617 date "2022-09-01" @default.
- W4281931617 modified "2023-10-17" @default.
- W4281931617 title "Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery" @default.
- W4281931617 cites W1981601131 @default.
- W4281931617 cites W1994120903 @default.
- W4281931617 cites W2024081693 @default.
- W4281931617 cites W2030812643 @default.
- W4281931617 cites W2048782774 @default.
- W4281931617 cites W2056435747 @default.
- W4281931617 cites W2066625173 @default.
- W4281931617 cites W2077099838 @default.
- W4281931617 cites W2079929727 @default.
- W4281931617 cites W2081455055 @default.
- W4281931617 cites W2082271565 @default.
- W4281931617 cites W2105058098 @default.
- W4281931617 cites W2117948918 @default.
- W4281931617 cites W2129090471 @default.
- W4281931617 cites W2170505850 @default.
- W4281931617 cites W2192434319 @default.
- W4281931617 cites W2560167313 @default.
- W4281931617 cites W2580334512 @default.
- W4281931617 cites W2614464134 @default.
- W4281931617 cites W2748331757 @default.
- W4281931617 cites W2773875735 @default.
- W4281931617 cites W2793603191 @default.
- W4281931617 cites W2794256331 @default.
- W4281931617 cites W2804624133 @default.
- W4281931617 cites W2889038031 @default.
- W4281931617 cites W2899100088 @default.
- W4281931617 cites W2920767026 @default.
- W4281931617 cites W2940726923 @default.
- W4281931617 cites W2962383592 @default.
- W4281931617 cites W2973391859 @default.
- W4281931617 cites W3021297918 @default.
- W4281931617 cites W3044364573 @default.
- W4281931617 cites W3087158156 @default.
- W4281931617 cites W3092621662 @default.
- W4281931617 cites W3116991906 @default.
- W4281931617 cites W3122680723 @default.
- W4281931617 cites W3129440727 @default.
- W4281931617 cites W3131388338 @default.
- W4281931617 cites W3133407985 @default.
- W4281931617 cites W3139186678 @default.
- W4281931617 cites W3158871835 @default.
- W4281931617 cites W3168077336 @default.
- W4281931617 cites W3178168147 @default.
- W4281931617 cites W3184748435 @default.
- W4281931617 cites W3210899793 @default.
- W4281931617 doi "https://doi.org/10.1016/j.rse.2022.113110" @default.
- W4281931617 hasPublicationYear "2022" @default.
- W4281931617 type Work @default.
- W4281931617 citedByCount "1" @default.
- W4281931617 countsByYear W42819316172023 @default.
- W4281931617 crossrefType "journal-article" @default.
- W4281931617 hasAuthorship W4281931617A5011061423 @default.
- W4281931617 hasAuthorship W4281931617A5037139982 @default.
- W4281931617 hasAuthorship W4281931617A5043411772 @default.
- W4281931617 hasAuthorship W4281931617A5075947380 @default.
- W4281931617 hasAuthorship W4281931617A5077770020 @default.
- W4281931617 hasAuthorship W4281931617A5080012446 @default.
- W4281931617 hasAuthorship W4281931617A5081604177 @default.
- W4281931617 hasAuthorship W4281931617A5089521753 @default.
- W4281931617 hasBestOaLocation W42819316172 @default.
- W4281931617 hasConcept C112964050 @default.
- W4281931617 hasConcept C130217890 @default.
- W4281931617 hasConcept C130989795 @default.
- W4281931617 hasConcept C142724271 @default.
- W4281931617 hasConcept C173163844 @default.
- W4281931617 hasConcept C176641082 @default.
- W4281931617 hasConcept C18903297 @default.
- W4281931617 hasConcept C205649164 @default.
- W4281931617 hasConcept C2776133958 @default.
- W4281931617 hasConcept C2778102629 @default.
- W4281931617 hasConcept C29376679 @default.
- W4281931617 hasConcept C39432304 @default.
- W4281931617 hasConcept C54286561 @default.
- W4281931617 hasConcept C62649853 @default.
- W4281931617 hasConcept C71924100 @default.
- W4281931617 hasConcept C86803240 @default.
- W4281931617 hasConcept C97137747 @default.
- W4281931617 hasConceptScore W4281931617C112964050 @default.
- W4281931617 hasConceptScore W4281931617C130217890 @default.
- W4281931617 hasConceptScore W4281931617C130989795 @default.
- W4281931617 hasConceptScore W4281931617C142724271 @default.
- W4281931617 hasConceptScore W4281931617C173163844 @default.
- W4281931617 hasConceptScore W4281931617C176641082 @default.
- W4281931617 hasConceptScore W4281931617C18903297 @default.
- W4281931617 hasConceptScore W4281931617C205649164 @default.