Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281946363> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4281946363 endingPage "11" @default.
- W4281946363 startingPage "1" @default.
- W4281946363 abstract "The wireless sensor network collects data from various areas through specific network nodes and uploads it to the decision-making layer for analysis and processing. Therefore, it has become a perception network of the Internet of Things and has made great achievements in monitoring and prevention at this stage. At this stage, the main problem is the motive power of sensor nodes, so the energy storage and transmission of wireless sensor network is imminent. Mobile edge computing technology provides a new type of technology for today's edge networks, enabling it to process resource-intensive data blocks and feedback to managers in time. It is a new starting point for cloud computing services, compared to traditional cloud computing services. The transmission speed is more efficient and will be widely used in various industries and serve them in the future. Among them, education and related industries urgently need in-depth information, which in turn promotes the rapid development of data mining by sensor networks. This article focuses on data mining technology, mainly expounds the meaning and main mining methods of data mining technology, and conducts data mining on sports training requirements from the aspects of demand collection and analysis, algorithm design and optimization, demand results and realization, etc. Monitor the training status and give the trainer reasonable suggestions. Through the processing of the training data mining results and proofreading the database standardized training data, we can formulate a personalized program suitable for sportsmen, reduce sports injuries caused by no trainer's guidance, and open new doors for training modes. Therefore, this paper studies the sensor network technology, edge computing deployment algorithm, and sports training data mining." @default.
- W4281946363 created "2022-06-13" @default.
- W4281946363 creator A5000187490 @default.
- W4281946363 creator A5078898076 @default.
- W4281946363 creator A5083555206 @default.
- W4281946363 date "2022-05-27" @default.
- W4281946363 modified "2023-09-27" @default.
- W4281946363 title "Edge Computing Deployment Algorithm and Sports Training Data Mining Based on Software Defined Network" @default.
- W4281946363 cites W1492996310 @default.
- W4281946363 cites W2003528018 @default.
- W4281946363 cites W2066691803 @default.
- W4281946363 cites W2074312267 @default.
- W4281946363 cites W2076357654 @default.
- W4281946363 cites W2076497645 @default.
- W4281946363 cites W2108697621 @default.
- W4281946363 cites W2121255383 @default.
- W4281946363 cites W2126236023 @default.
- W4281946363 cites W2130426318 @default.
- W4281946363 cites W2145099675 @default.
- W4281946363 cites W3015329993 @default.
- W4281946363 cites W3017699530 @default.
- W4281946363 cites W3041540203 @default.
- W4281946363 doi "https://doi.org/10.1155/2022/8056360" @default.
- W4281946363 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35669657" @default.
- W4281946363 hasPublicationYear "2022" @default.
- W4281946363 type Work @default.
- W4281946363 citedByCount "0" @default.
- W4281946363 crossrefType "journal-article" @default.
- W4281946363 hasAuthorship W4281946363A5000187490 @default.
- W4281946363 hasAuthorship W4281946363A5078898076 @default.
- W4281946363 hasAuthorship W4281946363A5083555206 @default.
- W4281946363 hasBestOaLocation W42819463631 @default.
- W4281946363 hasConcept C111919701 @default.
- W4281946363 hasConcept C124101348 @default.
- W4281946363 hasConcept C136764020 @default.
- W4281946363 hasConcept C154945302 @default.
- W4281946363 hasConcept C162307627 @default.
- W4281946363 hasConcept C199360897 @default.
- W4281946363 hasConcept C2522767166 @default.
- W4281946363 hasConcept C2778456923 @default.
- W4281946363 hasConcept C2780463512 @default.
- W4281946363 hasConcept C41008148 @default.
- W4281946363 hasConcept C71901391 @default.
- W4281946363 hasConcept C79974875 @default.
- W4281946363 hasConceptScore W4281946363C111919701 @default.
- W4281946363 hasConceptScore W4281946363C124101348 @default.
- W4281946363 hasConceptScore W4281946363C136764020 @default.
- W4281946363 hasConceptScore W4281946363C154945302 @default.
- W4281946363 hasConceptScore W4281946363C162307627 @default.
- W4281946363 hasConceptScore W4281946363C199360897 @default.
- W4281946363 hasConceptScore W4281946363C2522767166 @default.
- W4281946363 hasConceptScore W4281946363C2778456923 @default.
- W4281946363 hasConceptScore W4281946363C2780463512 @default.
- W4281946363 hasConceptScore W4281946363C41008148 @default.
- W4281946363 hasConceptScore W4281946363C71901391 @default.
- W4281946363 hasConceptScore W4281946363C79974875 @default.
- W4281946363 hasLocation W42819463631 @default.
- W4281946363 hasLocation W42819463632 @default.
- W4281946363 hasLocation W42819463633 @default.
- W4281946363 hasOpenAccess W4281946363 @default.
- W4281946363 hasPrimaryLocation W42819463631 @default.
- W4281946363 hasRelatedWork W2534668683 @default.
- W4281946363 hasRelatedWork W2890226260 @default.
- W4281946363 hasRelatedWork W2942586735 @default.
- W4281946363 hasRelatedWork W3126507566 @default.
- W4281946363 hasRelatedWork W3192562541 @default.
- W4281946363 hasRelatedWork W3211931762 @default.
- W4281946363 hasRelatedWork W4205122430 @default.
- W4281946363 hasRelatedWork W4225757241 @default.
- W4281946363 hasRelatedWork W4385414328 @default.
- W4281946363 hasRelatedWork W4385586765 @default.
- W4281946363 hasVolume "2022" @default.
- W4281946363 isParatext "false" @default.
- W4281946363 isRetracted "false" @default.
- W4281946363 workType "article" @default.