Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281996971> ?p ?o ?g. }
- W4281996971 endingPage "1208" @default.
- W4281996971 startingPage "1178" @default.
- W4281996971 abstract "Abstract Machine Learning (ML) excels at most predictive tasks but its complex nonparametric structure renders it less useful for inference and out‐of sample predictions. This article aims to elucidate and enhance the analytical capabilities of ML in real estate through Interpretable ML (IML). Specifically, we compare a hedonic ML approach to a set of model‐agnostic interpretation methods. Our results suggest that IML methods permit a peek into the black box of algorithmic decision making by showing the web of associative relationships between variables in greater resolution. In our empirical applications, we confirm that size and age are the most important rent drivers. Further analysis reveals that certain bundles of hedonic characteristics, such as large apartments in historic buildings with balconies located in affluent neighborhoods, attract higher rents than adding up the contributions of each hedonic characteristic. Building age is shown to exhibit a U‐shaped pattern in that both the youngest and oldest buildings attract the highest rents. Besides revealing valuable distance decay functions for spatial variables, IML methods are also able to visualise how the strength and interactions of hedonic characteristics change over time, which investors could use to determine the types of assets that perform best at any given stage of the real estate investment cycle." @default.
- W4281996971 created "2022-06-13" @default.
- W4281996971 creator A5022735236 @default.
- W4281996971 creator A5034510151 @default.
- W4281996971 creator A5045615504 @default.
- W4281996971 creator A5076726404 @default.
- W4281996971 date "2022-06-26" @default.
- W4281996971 modified "2023-10-14" @default.
- W4281996971 title "Interpretable machine learning for real estate market analysis" @default.
- W4281996971 cites W1070985961 @default.
- W4281996971 cites W1504778066 @default.
- W4281996971 cites W1541504294 @default.
- W4281996971 cites W1561752229 @default.
- W4281996971 cites W1589142552 @default.
- W4281996971 cites W1678356000 @default.
- W4281996971 cites W1844236883 @default.
- W4281996971 cites W1964357740 @default.
- W4281996971 cites W1988980926 @default.
- W4281996971 cites W1991382329 @default.
- W4281996971 cites W2004524716 @default.
- W4281996971 cites W201717784 @default.
- W4281996971 cites W2025797685 @default.
- W4281996971 cites W2028226037 @default.
- W4281996971 cites W2028399164 @default.
- W4281996971 cites W2043240804 @default.
- W4281996971 cites W2051688880 @default.
- W4281996971 cites W2056131953 @default.
- W4281996971 cites W2063450286 @default.
- W4281996971 cites W2066733466 @default.
- W4281996971 cites W2070300253 @default.
- W4281996971 cites W2077520869 @default.
- W4281996971 cites W2078214086 @default.
- W4281996971 cites W2084341220 @default.
- W4281996971 cites W2087093910 @default.
- W4281996971 cites W2101677938 @default.
- W4281996971 cites W2117033415 @default.
- W4281996971 cites W2134553571 @default.
- W4281996971 cites W2159598654 @default.
- W4281996971 cites W2178201418 @default.
- W4281996971 cites W2261419333 @default.
- W4281996971 cites W2302042839 @default.
- W4281996971 cites W2337109329 @default.
- W4281996971 cites W2487770199 @default.
- W4281996971 cites W2582045209 @default.
- W4281996971 cites W2588446139 @default.
- W4281996971 cites W2607344955 @default.
- W4281996971 cites W2610886376 @default.
- W4281996971 cites W2757285809 @default.
- W4281996971 cites W2769690951 @default.
- W4281996971 cites W2786693279 @default.
- W4281996971 cites W2787894218 @default.
- W4281996971 cites W2795310549 @default.
- W4281996971 cites W2803473620 @default.
- W4281996971 cites W2809140644 @default.
- W4281996971 cites W2809891625 @default.
- W4281996971 cites W2888487581 @default.
- W4281996971 cites W2889948534 @default.
- W4281996971 cites W2891503716 @default.
- W4281996971 cites W2896827418 @default.
- W4281996971 cites W2911438300 @default.
- W4281996971 cites W2911964244 @default.
- W4281996971 cites W2913543033 @default.
- W4281996971 cites W2924198847 @default.
- W4281996971 cites W2948056727 @default.
- W4281996971 cites W2964303497 @default.
- W4281996971 cites W2970629681 @default.
- W4281996971 cites W2971574616 @default.
- W4281996971 cites W2981731882 @default.
- W4281996971 cites W2999044305 @default.
- W4281996971 cites W3015910285 @default.
- W4281996971 cites W3035517615 @default.
- W4281996971 cites W3096541186 @default.
- W4281996971 cites W3102476541 @default.
- W4281996971 cites W3116286104 @default.
- W4281996971 cites W3121452939 @default.
- W4281996971 cites W3121579081 @default.
- W4281996971 cites W3123019030 @default.
- W4281996971 cites W3123930234 @default.
- W4281996971 cites W3124228313 @default.
- W4281996971 cites W3125411920 @default.
- W4281996971 cites W3133894893 @default.
- W4281996971 cites W4296141469 @default.
- W4281996971 doi "https://doi.org/10.1111/1540-6229.12397" @default.
- W4281996971 hasPublicationYear "2022" @default.
- W4281996971 type Work @default.
- W4281996971 citedByCount "5" @default.
- W4281996971 countsByYear W42819969712022 @default.
- W4281996971 countsByYear W42819969712023 @default.
- W4281996971 crossrefType "journal-article" @default.
- W4281996971 hasAuthorship W4281996971A5022735236 @default.
- W4281996971 hasAuthorship W4281996971A5034510151 @default.
- W4281996971 hasAuthorship W4281996971A5045615504 @default.
- W4281996971 hasAuthorship W4281996971A5076726404 @default.
- W4281996971 hasBestOaLocation W42819969711 @default.
- W4281996971 hasConcept C10138342 @default.
- W4281996971 hasConcept C106866004 @default.
- W4281996971 hasConcept C119857082 @default.
- W4281996971 hasConcept C149782125 @default.