Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282012351> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4282012351 abstract "Summary In this paper, a new technique is suggested for best electric load forecasting of South Korea. The proposed study is based on an improved metaheuristic methodology. This paper proposes a new improved version of Support Vector Machine for Regression (SVR) base on the proposed algorithm. The algorithm is based on a modified version of Crow Search Algorithm (ACSA), where, by combining by the SVR, generates an efficient classifier. Although, different drawbacks of using original CSA are stated, the proposed ACSA method provides a proper modification for resolving of these shortcomings. The forecasting model has been then performed to a historical data from South Korea to indicate the algorithm efficiency and the results are compared with some other methods, including SVR‐CGA, SVR‐CAS, ANN, and simple Regression to show the suggested method performance. Final results show that MAPD, MSE, and RMSE values of the test data with lower values for South, North, Center, and East, provided better results based on the proposed SVR‐ACSA based on different values of center and kernel of the SVR. Experimental results on the case study shows that the minimum MAPD has been added which is happened in Northern regional is 1.1062, 1.1336, 1.1065, 1.02, 2.23, 1.96, and 1.49 for SVR‐ACSA, SVR‐CGA, SVR‐CAS, ANN, Regression, LSTM‐RNN, and ELM which indicates the method's higher efficiency." @default.
- W4282012351 created "2022-06-13" @default.
- W4282012351 creator A5003079688 @default.
- W4282012351 creator A5018857075 @default.
- W4282012351 creator A5051902767 @default.
- W4282012351 date "2022-06-02" @default.
- W4282012351 modified "2023-09-27" @default.
- W4282012351 title "Optimal electric load forecasting for systems by an adaptive Crow Search Algorithm: A case study" @default.
- W4282012351 cites W166348299 @default.
- W4282012351 cites W1983865796 @default.
- W4282012351 cites W2002098737 @default.
- W4282012351 cites W2016610252 @default.
- W4282012351 cites W2031183907 @default.
- W4282012351 cites W2037370667 @default.
- W4282012351 cites W2042253843 @default.
- W4282012351 cites W2071093112 @default.
- W4282012351 cites W2107886654 @default.
- W4282012351 cites W2111638420 @default.
- W4282012351 cites W2157833270 @default.
- W4282012351 cites W2563045807 @default.
- W4282012351 cites W2573137292 @default.
- W4282012351 cites W2617638177 @default.
- W4282012351 cites W2686419387 @default.
- W4282012351 cites W2739283086 @default.
- W4282012351 cites W2765668510 @default.
- W4282012351 cites W2793060776 @default.
- W4282012351 cites W2795785493 @default.
- W4282012351 cites W2799080304 @default.
- W4282012351 cites W2799456480 @default.
- W4282012351 cites W2804609327 @default.
- W4282012351 cites W2810540872 @default.
- W4282012351 cites W2883383020 @default.
- W4282012351 cites W2899191645 @default.
- W4282012351 cites W2901551017 @default.
- W4282012351 cites W2902533895 @default.
- W4282012351 cites W2910713102 @default.
- W4282012351 cites W2911910296 @default.
- W4282012351 cites W2947204379 @default.
- W4282012351 cites W2953890754 @default.
- W4282012351 cites W2964476454 @default.
- W4282012351 cites W2965503466 @default.
- W4282012351 cites W2979433804 @default.
- W4282012351 cites W2980497801 @default.
- W4282012351 cites W2982453621 @default.
- W4282012351 cites W2986000887 @default.
- W4282012351 cites W2986264121 @default.
- W4282012351 cites W2987774767 @default.
- W4282012351 cites W2999869395 @default.
- W4282012351 cites W3001422026 @default.
- W4282012351 cites W3033885869 @default.
- W4282012351 cites W3036257754 @default.
- W4282012351 cites W3085674933 @default.
- W4282012351 cites W3105841945 @default.
- W4282012351 cites W3111651974 @default.
- W4282012351 cites W3169963035 @default.
- W4282012351 cites W3171074139 @default.
- W4282012351 cites W3212544916 @default.
- W4282012351 cites W3213797046 @default.
- W4282012351 doi "https://doi.org/10.1002/cpe.7120" @default.
- W4282012351 hasPublicationYear "2022" @default.
- W4282012351 type Work @default.
- W4282012351 citedByCount "0" @default.
- W4282012351 crossrefType "journal-article" @default.
- W4282012351 hasAuthorship W4282012351A5003079688 @default.
- W4282012351 hasAuthorship W4282012351A5018857075 @default.
- W4282012351 hasAuthorship W4282012351A5051902767 @default.
- W4282012351 hasConcept C11413529 @default.
- W4282012351 hasConcept C119857082 @default.
- W4282012351 hasConcept C12267149 @default.
- W4282012351 hasConcept C124101348 @default.
- W4282012351 hasConcept C154945302 @default.
- W4282012351 hasConcept C41008148 @default.
- W4282012351 hasConceptScore W4282012351C11413529 @default.
- W4282012351 hasConceptScore W4282012351C119857082 @default.
- W4282012351 hasConceptScore W4282012351C12267149 @default.
- W4282012351 hasConceptScore W4282012351C124101348 @default.
- W4282012351 hasConceptScore W4282012351C154945302 @default.
- W4282012351 hasConceptScore W4282012351C41008148 @default.
- W4282012351 hasIssue "21" @default.
- W4282012351 hasLocation W42820123511 @default.
- W4282012351 hasOpenAccess W4282012351 @default.
- W4282012351 hasPrimaryLocation W42820123511 @default.
- W4282012351 hasRelatedWork W1996541855 @default.
- W4282012351 hasRelatedWork W2355927362 @default.
- W4282012351 hasRelatedWork W2961085424 @default.
- W4282012351 hasRelatedWork W3195168932 @default.
- W4282012351 hasRelatedWork W4285260836 @default.
- W4282012351 hasRelatedWork W4286629047 @default.
- W4282012351 hasRelatedWork W4306321456 @default.
- W4282012351 hasRelatedWork W4306674287 @default.
- W4282012351 hasRelatedWork W4316658362 @default.
- W4282012351 hasRelatedWork W4224009465 @default.
- W4282012351 hasVolume "34" @default.
- W4282012351 isParatext "false" @default.
- W4282012351 isRetracted "false" @default.
- W4282012351 workType "article" @default.