Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282013003> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4282013003 endingPage "235" @default.
- W4282013003 startingPage "226" @default.
- W4282013003 abstract "Prediction of power output plays a vital role in the installation and operation of photovoltaic modules. In this paper, two photovoltaic module technologies, amorphous silicon and copper indium gallium selenide installed outdoors on the rooftop of the University of Dodoma, located at 6.5738° S and 36.2631° E in Tanzania, were used to record the power output during the winter season. The average data of ambient temperature, module temperature, solar irradiance, relative humidity, and wind speed recorded is used to predict the power output using a non-linear autoregressive artificial neural network. We consider the Levenberg-Marquardt optimization, Bayesian regularization, resilient propagation, and scaled conjugate gradient algorithms to understand their abilities in training, testing and validating the data. A comparison with reference to the performance indices: coefficient of determination, root mean square error, mean absolute percentage error, and mean absolute bias error is drawn for both modules. According to the findings of our investigation, the predicted results are in good agreement with the experimental results. All the algorithms performed better, and the predicted power out of both modules using the Bayesian regularization algorithm is observed to exhibit good processing capabilities compared to the other three algorithms that are evident from the measured performance indices." @default.
- W4282013003 created "2022-06-13" @default.
- W4282013003 creator A5001847594 @default.
- W4282013003 creator A5002242495 @default.
- W4282013003 creator A5084518685 @default.
- W4282013003 date "2022-04-01" @default.
- W4282013003 modified "2023-10-03" @default.
- W4282013003 title "Prediction of photovoltaic power output based on different non-linear autoregressive artificial neural network algorithms" @default.
- W4282013003 doi "https://doi.org/10.1016/j.gloei.2022.04.019" @default.
- W4282013003 hasPublicationYear "2022" @default.
- W4282013003 type Work @default.
- W4282013003 citedByCount "4" @default.
- W4282013003 countsByYear W42820130032023 @default.
- W4282013003 crossrefType "journal-article" @default.
- W4282013003 hasAuthorship W4282013003A5001847594 @default.
- W4282013003 hasAuthorship W4282013003A5002242495 @default.
- W4282013003 hasAuthorship W4282013003A5084518685 @default.
- W4282013003 hasBestOaLocation W42820130031 @default.
- W4282013003 hasConcept C105795698 @default.
- W4282013003 hasConcept C11413529 @default.
- W4282013003 hasConcept C119599485 @default.
- W4282013003 hasConcept C119857082 @default.
- W4282013003 hasConcept C121332964 @default.
- W4282013003 hasConcept C122383733 @default.
- W4282013003 hasConcept C127413603 @default.
- W4282013003 hasConcept C139945424 @default.
- W4282013003 hasConcept C150217764 @default.
- W4282013003 hasConcept C153294291 @default.
- W4282013003 hasConcept C159877910 @default.
- W4282013003 hasConcept C33923547 @default.
- W4282013003 hasConcept C41008148 @default.
- W4282013003 hasConcept C41291067 @default.
- W4282013003 hasConcept C50644808 @default.
- W4282013003 hasConcept C9695528 @default.
- W4282013003 hasConceptScore W4282013003C105795698 @default.
- W4282013003 hasConceptScore W4282013003C11413529 @default.
- W4282013003 hasConceptScore W4282013003C119599485 @default.
- W4282013003 hasConceptScore W4282013003C119857082 @default.
- W4282013003 hasConceptScore W4282013003C121332964 @default.
- W4282013003 hasConceptScore W4282013003C122383733 @default.
- W4282013003 hasConceptScore W4282013003C127413603 @default.
- W4282013003 hasConceptScore W4282013003C139945424 @default.
- W4282013003 hasConceptScore W4282013003C150217764 @default.
- W4282013003 hasConceptScore W4282013003C153294291 @default.
- W4282013003 hasConceptScore W4282013003C159877910 @default.
- W4282013003 hasConceptScore W4282013003C33923547 @default.
- W4282013003 hasConceptScore W4282013003C41008148 @default.
- W4282013003 hasConceptScore W4282013003C41291067 @default.
- W4282013003 hasConceptScore W4282013003C50644808 @default.
- W4282013003 hasConceptScore W4282013003C9695528 @default.
- W4282013003 hasIssue "2" @default.
- W4282013003 hasLocation W42820130031 @default.
- W4282013003 hasOpenAccess W4282013003 @default.
- W4282013003 hasPrimaryLocation W42820130031 @default.
- W4282013003 hasRelatedWork W2076256850 @default.
- W4282013003 hasRelatedWork W2188032833 @default.
- W4282013003 hasRelatedWork W2353607532 @default.
- W4282013003 hasRelatedWork W2807954395 @default.
- W4282013003 hasRelatedWork W2808471159 @default.
- W4282013003 hasRelatedWork W2886255183 @default.
- W4282013003 hasRelatedWork W2911705200 @default.
- W4282013003 hasRelatedWork W3173604411 @default.
- W4282013003 hasRelatedWork W4200094666 @default.
- W4282013003 hasRelatedWork W4238036087 @default.
- W4282013003 hasVolume "5" @default.
- W4282013003 isParatext "false" @default.
- W4282013003 isRetracted "false" @default.
- W4282013003 workType "article" @default.