Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282015514> ?p ?o ?g. }
- W4282015514 endingPage "5790" @default.
- W4282015514 startingPage "5790" @default.
- W4282015514 abstract "Background: Understanding the proportion of cell types in heterogeneous tissue samples is important in bioinformatics. It is a challenge to infer the proportion of tissues using bulk RNA sequencing data in bioinformatics because most traditional algorithms for predicting tissue cell ratios heavily rely on standardized specific cell-type gene expression profiles, and do not consider tissue heterogeneity. The prediction accuracy of algorithms is limited, and robustness is lacking. This means that new approaches are needed urgently. Methods: In this study, we introduced an algorithm that automatically predicts tissue cell ratios named Autoptcr. The algorithm uses the data simulated by single-cell RNA sequencing (ScRNA-Seq) for model training, using convolutional neural networks (CNNs) to extract intrinsic relationships between genes and predict the cell proportions of tissues. Results: We trained the algorithm using simulated bulk samples and made predictions using real bulk PBMC data. Comparing Autoptcr with existing advanced algorithms, the Pearson correlation coefficient between the actual value of Autoptcr and the predicted value was the highest, reaching 0.903. Tested on a bulk sample, the correlation coefficient of Lin was 41% higher than that of CSx. The algorithm can infer tissue cell proportions directly from tissue gene expression data. Conclusions: The Autoptcr algorithm uses simulated ScRNA-Seq data for training to solve the problem of specific cell-type gene expression profiles. It also has high prediction accuracy and strong noise resistance for the tissue cell ratio. This work is expected to provide new research ideas for the prediction of tissue cell proportions." @default.
- W4282015514 created "2022-06-13" @default.
- W4282015514 creator A5000873086 @default.
- W4282015514 creator A5008171524 @default.
- W4282015514 creator A5019018136 @default.
- W4282015514 creator A5029360035 @default.
- W4282015514 creator A5036667044 @default.
- W4282015514 creator A5052095171 @default.
- W4282015514 creator A5056131984 @default.
- W4282015514 creator A5059686117 @default.
- W4282015514 creator A5063560993 @default.
- W4282015514 date "2022-06-07" @default.
- W4282015514 modified "2023-10-15" @default.
- W4282015514 title "Predicting Algorithm of Tissue Cell Ratio Based on Deep Learning Using Single-Cell RNA Sequencing" @default.
- W4282015514 cites W1985987855 @default.
- W4282015514 cites W2048500586 @default.
- W4282015514 cites W2160333540 @default.
- W4282015514 cites W2419143634 @default.
- W4282015514 cites W2507880739 @default.
- W4282015514 cites W2527229715 @default.
- W4282015514 cites W2533508881 @default.
- W4282015514 cites W2591733518 @default.
- W4282015514 cites W2604447842 @default.
- W4282015514 cites W2612502013 @default.
- W4282015514 cites W2788357641 @default.
- W4282015514 cites W2885720383 @default.
- W4282015514 cites W2899588238 @default.
- W4282015514 cites W2904391628 @default.
- W4282015514 cites W2921330004 @default.
- W4282015514 cites W2942610007 @default.
- W4282015514 cites W2951890476 @default.
- W4282015514 cites W2952240309 @default.
- W4282015514 cites W2953866345 @default.
- W4282015514 cites W2960029024 @default.
- W4282015514 cites W2971233697 @default.
- W4282015514 cites W2979772256 @default.
- W4282015514 cites W2996171578 @default.
- W4282015514 cites W3016458340 @default.
- W4282015514 cites W3019556496 @default.
- W4282015514 cites W3088954204 @default.
- W4282015514 cites W3118849221 @default.
- W4282015514 cites W3139200593 @default.
- W4282015514 cites W3139240024 @default.
- W4282015514 cites W3161009639 @default.
- W4282015514 cites W3161961578 @default.
- W4282015514 cites W3170929191 @default.
- W4282015514 cites W3177020879 @default.
- W4282015514 cites W3189144368 @default.
- W4282015514 cites W3205213119 @default.
- W4282015514 cites W4205118596 @default.
- W4282015514 cites W4210829655 @default.
- W4282015514 cites W4220700446 @default.
- W4282015514 cites W4225343266 @default.
- W4282015514 doi "https://doi.org/10.3390/app12125790" @default.
- W4282015514 hasPublicationYear "2022" @default.
- W4282015514 type Work @default.
- W4282015514 citedByCount "1" @default.
- W4282015514 countsByYear W42820155142022 @default.
- W4282015514 crossrefType "journal-article" @default.
- W4282015514 hasAuthorship W4282015514A5000873086 @default.
- W4282015514 hasAuthorship W4282015514A5008171524 @default.
- W4282015514 hasAuthorship W4282015514A5019018136 @default.
- W4282015514 hasAuthorship W4282015514A5029360035 @default.
- W4282015514 hasAuthorship W4282015514A5036667044 @default.
- W4282015514 hasAuthorship W4282015514A5052095171 @default.
- W4282015514 hasAuthorship W4282015514A5056131984 @default.
- W4282015514 hasAuthorship W4282015514A5059686117 @default.
- W4282015514 hasAuthorship W4282015514A5063560993 @default.
- W4282015514 hasBestOaLocation W42820155141 @default.
- W4282015514 hasConcept C104317684 @default.
- W4282015514 hasConcept C105795698 @default.
- W4282015514 hasConcept C11413529 @default.
- W4282015514 hasConcept C117220453 @default.
- W4282015514 hasConcept C119857082 @default.
- W4282015514 hasConcept C124101348 @default.
- W4282015514 hasConcept C1491633281 @default.
- W4282015514 hasConcept C153180895 @default.
- W4282015514 hasConcept C154945302 @default.
- W4282015514 hasConcept C189014844 @default.
- W4282015514 hasConcept C2524010 @default.
- W4282015514 hasConcept C2780092901 @default.
- W4282015514 hasConcept C33923547 @default.
- W4282015514 hasConcept C41008148 @default.
- W4282015514 hasConcept C54355233 @default.
- W4282015514 hasConcept C55078378 @default.
- W4282015514 hasConcept C63479239 @default.
- W4282015514 hasConcept C67705224 @default.
- W4282015514 hasConcept C81363708 @default.
- W4282015514 hasConcept C86803240 @default.
- W4282015514 hasConceptScore W4282015514C104317684 @default.
- W4282015514 hasConceptScore W4282015514C105795698 @default.
- W4282015514 hasConceptScore W4282015514C11413529 @default.
- W4282015514 hasConceptScore W4282015514C117220453 @default.
- W4282015514 hasConceptScore W4282015514C119857082 @default.
- W4282015514 hasConceptScore W4282015514C124101348 @default.
- W4282015514 hasConceptScore W4282015514C1491633281 @default.
- W4282015514 hasConceptScore W4282015514C153180895 @default.
- W4282015514 hasConceptScore W4282015514C154945302 @default.