Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282017169> ?p ?o ?g. }
- W4282017169 endingPage "108573" @default.
- W4282017169 startingPage "108573" @default.
- W4282017169 abstract "We show how to apply Sobol’s method of global sensitivity analysis to measure the influence exerted by a set of nodes’ evidence on a quantity of interest expressed by a Bayesian network. Our method exploits the network structure so as to transform the problem of Sobol index estimation into that of marginalization inference and, unlike Monte Carlo based estimators for variance-based sensitivity analysis, it gives exact results when exact inference is used. Moreover, the method supports the case of correlated inputs and it is efficient as long as eliminating the inputs’ ancestors is computationally affordable. The proposed algorithms are inspired by the field of tensor networks and generalize earlier tensor sensitivity techniques from the acyclic to the cyclic case. We demonstrate our method on three medium to large Bayesian networks in the areas of structural reliability and project risk management." @default.
- W4282017169 created "2022-06-13" @default.
- W4282017169 creator A5040861557 @default.
- W4282017169 creator A5044691373 @default.
- W4282017169 date "2022-09-01" @default.
- W4282017169 modified "2023-09-27" @default.
- W4282017169 title "Computing Sobol indices in probabilistic graphical models" @default.
- W4282017169 cites W1486848798 @default.
- W4282017169 cites W1840615978 @default.
- W4282017169 cites W1989276639 @default.
- W4282017169 cites W1998160729 @default.
- W4282017169 cites W2029448190 @default.
- W4282017169 cites W2049774453 @default.
- W4282017169 cites W2079067750 @default.
- W4282017169 cites W2081023708 @default.
- W4282017169 cites W2083790056 @default.
- W4282017169 cites W2085400663 @default.
- W4282017169 cites W2098128908 @default.
- W4282017169 cites W2113117406 @default.
- W4282017169 cites W2128088446 @default.
- W4282017169 cites W2137632579 @default.
- W4282017169 cites W2143022451 @default.
- W4282017169 cites W2149104446 @default.
- W4282017169 cites W2149426898 @default.
- W4282017169 cites W2463573071 @default.
- W4282017169 cites W2549473102 @default.
- W4282017169 cites W2569457803 @default.
- W4282017169 cites W2613501460 @default.
- W4282017169 cites W2743108346 @default.
- W4282017169 cites W2883939481 @default.
- W4282017169 cites W2883961236 @default.
- W4282017169 cites W2888500057 @default.
- W4282017169 cites W2909310974 @default.
- W4282017169 cites W2962804139 @default.
- W4282017169 cites W2962825056 @default.
- W4282017169 cites W2963308017 @default.
- W4282017169 cites W2963741498 @default.
- W4282017169 cites W2964075504 @default.
- W4282017169 cites W2973325107 @default.
- W4282017169 cites W2987466992 @default.
- W4282017169 cites W2991211569 @default.
- W4282017169 cites W3007400702 @default.
- W4282017169 cites W3023656128 @default.
- W4282017169 cites W3035422487 @default.
- W4282017169 cites W3036162042 @default.
- W4282017169 cites W3082981368 @default.
- W4282017169 cites W3103897629 @default.
- W4282017169 cites W3106934521 @default.
- W4282017169 cites W3107919102 @default.
- W4282017169 cites W3110929880 @default.
- W4282017169 cites W3112134271 @default.
- W4282017169 cites W3119241231 @default.
- W4282017169 cites W3129234675 @default.
- W4282017169 cites W3131548635 @default.
- W4282017169 cites W3159205560 @default.
- W4282017169 cites W3163630616 @default.
- W4282017169 cites W3165278892 @default.
- W4282017169 cites W3183830468 @default.
- W4282017169 cites W3193833728 @default.
- W4282017169 cites W3194405510 @default.
- W4282017169 cites W3196330020 @default.
- W4282017169 cites W3205156559 @default.
- W4282017169 cites W925742927 @default.
- W4282017169 doi "https://doi.org/10.1016/j.ress.2022.108573" @default.
- W4282017169 hasPublicationYear "2022" @default.
- W4282017169 type Work @default.
- W4282017169 citedByCount "4" @default.
- W4282017169 countsByYear W42820171692023 @default.
- W4282017169 crossrefType "journal-article" @default.
- W4282017169 hasAuthorship W4282017169A5040861557 @default.
- W4282017169 hasAuthorship W4282017169A5044691373 @default.
- W4282017169 hasConcept C105795698 @default.
- W4282017169 hasConcept C107673813 @default.
- W4282017169 hasConcept C11413529 @default.
- W4282017169 hasConcept C121955636 @default.
- W4282017169 hasConcept C124101348 @default.
- W4282017169 hasConcept C126255220 @default.
- W4282017169 hasConcept C127413603 @default.
- W4282017169 hasConcept C144133560 @default.
- W4282017169 hasConcept C154945302 @default.
- W4282017169 hasConcept C155846161 @default.
- W4282017169 hasConcept C177264268 @default.
- W4282017169 hasConcept C185429906 @default.
- W4282017169 hasConcept C19499675 @default.
- W4282017169 hasConcept C196083921 @default.
- W4282017169 hasConcept C199360897 @default.
- W4282017169 hasConcept C21200559 @default.
- W4282017169 hasConcept C24326235 @default.
- W4282017169 hasConcept C2776214188 @default.
- W4282017169 hasConcept C2780009758 @default.
- W4282017169 hasConcept C33724603 @default.
- W4282017169 hasConcept C33923547 @default.
- W4282017169 hasConcept C41008148 @default.
- W4282017169 hasConcept C49740808 @default.
- W4282017169 hasConcept C49937458 @default.
- W4282017169 hasConceptScore W4282017169C105795698 @default.
- W4282017169 hasConceptScore W4282017169C107673813 @default.
- W4282017169 hasConceptScore W4282017169C11413529 @default.