Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282018720> ?p ?o ?g. }
- W4282018720 endingPage "129324" @default.
- W4282018720 startingPage "129324" @default.
- W4282018720 abstract "The efficacy of source apportionment is often limited by a lack of information on natural and anthropogenic contributing factors influencing soil heavy metal (HM) contaminations. To overcome this limitation and develop the data mining methods, a novel hybrid data-driven framework was proposed to diagnose the contributing factors in an industrialized region in Guangdong Province, China, mainly using a combination of naive Bayes (NB), random forest (RF), and bivariate local Moran's I (BLMI) on the basis of the multi-source big data. The medium industry types of enterprises from the freely available Baidu point of interest data were successfully classified, and then the 250 contaminating enterprises as a contributing factor were identified by the optimized NB classifier. The quantitative contributions of the nine contributing factors for the As, Cd, and Hg concentrations were determined by the optimized RF. The twelve spatial clustering maps between the three HM concentrations and the four key contributing factors were generated by BLMI, explicitly revealing their mutual interactions and internal effects and also intuitively showing the high-high areas and their distributions. This framework can obtain rich information on contributing factors such as medium industry types, contribution rates, spatial clusters, and spatial distributions." @default.
- W4282018720 created "2022-06-13" @default.
- W4282018720 creator A5005945085 @default.
- W4282018720 creator A5022238481 @default.
- W4282018720 creator A5029102917 @default.
- W4282018720 creator A5030176542 @default.
- W4282018720 creator A5031574868 @default.
- W4282018720 creator A5035701638 @default.
- W4282018720 creator A5036022527 @default.
- W4282018720 creator A5045460876 @default.
- W4282018720 creator A5074984127 @default.
- W4282018720 date "2022-09-01" @default.
- W4282018720 modified "2023-10-17" @default.
- W4282018720 title "A hybrid data-driven framework for diagnosing contributing factors for soil heavy metal contaminations using machine learning and spatial clustering analysis" @default.
- W4282018720 cites W1659610993 @default.
- W4282018720 cites W1932207377 @default.
- W4282018720 cites W1963537902 @default.
- W4282018720 cites W2009569655 @default.
- W4282018720 cites W2014103842 @default.
- W4282018720 cites W2025165202 @default.
- W4282018720 cites W2026774498 @default.
- W4282018720 cites W2027279169 @default.
- W4282018720 cites W2047356921 @default.
- W4282018720 cites W2050692691 @default.
- W4282018720 cites W2055477072 @default.
- W4282018720 cites W2087553518 @default.
- W4282018720 cites W2092460788 @default.
- W4282018720 cites W2128891577 @default.
- W4282018720 cites W2140785063 @default.
- W4282018720 cites W2155019272 @default.
- W4282018720 cites W2256438753 @default.
- W4282018720 cites W2344844058 @default.
- W4282018720 cites W2381445393 @default.
- W4282018720 cites W2400704141 @default.
- W4282018720 cites W2538817391 @default.
- W4282018720 cites W2575186963 @default.
- W4282018720 cites W2601418425 @default.
- W4282018720 cites W2602874887 @default.
- W4282018720 cites W2765637995 @default.
- W4282018720 cites W2795420969 @default.
- W4282018720 cites W2802991884 @default.
- W4282018720 cites W2808616224 @default.
- W4282018720 cites W2884503196 @default.
- W4282018720 cites W2895233088 @default.
- W4282018720 cites W2905838009 @default.
- W4282018720 cites W2911964244 @default.
- W4282018720 cites W2915079863 @default.
- W4282018720 cites W2939928047 @default.
- W4282018720 cites W2944363325 @default.
- W4282018720 cites W2954996726 @default.
- W4282018720 cites W2972784318 @default.
- W4282018720 cites W3006868064 @default.
- W4282018720 cites W3035869533 @default.
- W4282018720 cites W3036693443 @default.
- W4282018720 cites W3103180587 @default.
- W4282018720 cites W3106672452 @default.
- W4282018720 cites W3111255905 @default.
- W4282018720 cites W3113334052 @default.
- W4282018720 cites W3121016933 @default.
- W4282018720 cites W3131577019 @default.
- W4282018720 cites W3154487598 @default.
- W4282018720 cites W3157405021 @default.
- W4282018720 cites W3161161557 @default.
- W4282018720 cites W3172805721 @default.
- W4282018720 cites W3173621781 @default.
- W4282018720 cites W3176882034 @default.
- W4282018720 cites W3185287488 @default.
- W4282018720 cites W3197854492 @default.
- W4282018720 cites W3204561567 @default.
- W4282018720 cites W3211551659 @default.
- W4282018720 cites W4200488695 @default.
- W4282018720 cites W4207057863 @default.
- W4282018720 doi "https://doi.org/10.1016/j.jhazmat.2022.129324" @default.
- W4282018720 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35714539" @default.
- W4282018720 hasPublicationYear "2022" @default.
- W4282018720 type Work @default.
- W4282018720 citedByCount "10" @default.
- W4282018720 countsByYear W42820187202023 @default.
- W4282018720 crossrefType "journal-article" @default.
- W4282018720 hasAuthorship W4282018720A5005945085 @default.
- W4282018720 hasAuthorship W4282018720A5022238481 @default.
- W4282018720 hasAuthorship W4282018720A5029102917 @default.
- W4282018720 hasAuthorship W4282018720A5030176542 @default.
- W4282018720 hasAuthorship W4282018720A5031574868 @default.
- W4282018720 hasAuthorship W4282018720A5035701638 @default.
- W4282018720 hasAuthorship W4282018720A5036022527 @default.
- W4282018720 hasAuthorship W4282018720A5045460876 @default.
- W4282018720 hasAuthorship W4282018720A5074984127 @default.
- W4282018720 hasConcept C105795698 @default.
- W4282018720 hasConcept C119857082 @default.
- W4282018720 hasConcept C12267149 @default.
- W4282018720 hasConcept C124101348 @default.
- W4282018720 hasConcept C159620131 @default.
- W4282018720 hasConcept C169258074 @default.
- W4282018720 hasConcept C17744445 @default.
- W4282018720 hasConcept C199539241 @default.
- W4282018720 hasConcept C2778337684 @default.
- W4282018720 hasConcept C33923547 @default.