Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282022862> ?p ?o ?g. }
- W4282022862 endingPage "817" @default.
- W4282022862 startingPage "817" @default.
- W4282022862 abstract "Accurate and rapid access to crop distribution information is a significant requirement for the development of modern agriculture. Improving the efficiency of remote sensing monitoring of winter wheat planting area information, a new method of automatically updating training samples (AUTS), is proposed herein. Firstly, based on the Google Earth Engine (GEE) platform, a Sentinel-2 image with a spatial resolution of 10 m was selected to extract the distribution map of winter wheat in the city of Shijiazhuang in 2017. Secondly, combined with the NDVI time series, the weighted correlation coefficients from 2017, 2018, and 2019 were calculated. Then, the 2017 winter wheat distribution map and its most significant relevant areas were used to extract sample points from 2018 and 2019 automatically. Finally, the distribution map of winter wheat in Shijiazhuang in 2018 and 2019 was generated. In addition, to test the applicability of the automatically updating training sample at different scales and regions, the proposed method was applied to Landsat 8 image data with a spatial resolution of 30 m, as well as to Handan and Baoding. The results showed that the calculated winter wheat planting area is comparable with the officially published statistics, based on Sentinel-2, extracting three years of winter wheat, the R2 values for all three years were above 0.95. The R2 values for 2018 and 2019, based on Landsat 8 extractions, were 0.95 and 0.90, respectively. The R2 values extracted from Handan and Baoding in 2018 were 0.94 and 0.86, respectively. These results indicate that the proposed method has high accuracy and can provide technical support and reference for winter wheat area monitoring and yield estimation." @default.
- W4282022862 created "2022-06-13" @default.
- W4282022862 creator A5006776266 @default.
- W4282022862 creator A5024120345 @default.
- W4282022862 creator A5032904655 @default.
- W4282022862 creator A5071911721 @default.
- W4282022862 creator A5072326245 @default.
- W4282022862 creator A5072620654 @default.
- W4282022862 creator A5078196996 @default.
- W4282022862 date "2022-06-06" @default.
- W4282022862 modified "2023-09-25" @default.
- W4282022862 title "AUTS: A Novel Approach to Mapping Winter Wheat by Automatically Updating Training Samples Based on NDVI Time Series" @default.
- W4282022862 cites W1972923945 @default.
- W4282022862 cites W1991861340 @default.
- W4282022862 cites W1992939357 @default.
- W4282022862 cites W1998281138 @default.
- W4282022862 cites W2000298704 @default.
- W4282022862 cites W2015008560 @default.
- W4282022862 cites W2030165874 @default.
- W4282022862 cites W2057154121 @default.
- W4282022862 cites W2072465375 @default.
- W4282022862 cites W2108493207 @default.
- W4282022862 cites W2160566385 @default.
- W4282022862 cites W2160799121 @default.
- W4282022862 cites W2169955806 @default.
- W4282022862 cites W2178470810 @default.
- W4282022862 cites W2278830514 @default.
- W4282022862 cites W2344321674 @default.
- W4282022862 cites W2490264735 @default.
- W4282022862 cites W2591129009 @default.
- W4282022862 cites W2725897987 @default.
- W4282022862 cites W2784776647 @default.
- W4282022862 cites W2885634264 @default.
- W4282022862 cites W2886775386 @default.
- W4282022862 cites W2901774584 @default.
- W4282022862 cites W2919877096 @default.
- W4282022862 cites W2920254659 @default.
- W4282022862 cites W2974499698 @default.
- W4282022862 cites W2999209063 @default.
- W4282022862 cites W2999658315 @default.
- W4282022862 cites W3005790354 @default.
- W4282022862 cites W3039128647 @default.
- W4282022862 cites W3043490760 @default.
- W4282022862 cites W3044885581 @default.
- W4282022862 cites W3045004897 @default.
- W4282022862 cites W3045732244 @default.
- W4282022862 cites W3091015953 @default.
- W4282022862 cites W3125359252 @default.
- W4282022862 cites W3129728509 @default.
- W4282022862 cites W3138947694 @default.
- W4282022862 cites W3185487988 @default.
- W4282022862 cites W3211300303 @default.
- W4282022862 cites W3215051290 @default.
- W4282022862 cites W4205970347 @default.
- W4282022862 cites W639537632 @default.
- W4282022862 doi "https://doi.org/10.3390/agriculture12060817" @default.
- W4282022862 hasPublicationYear "2022" @default.
- W4282022862 type Work @default.
- W4282022862 citedByCount "1" @default.
- W4282022862 countsByYear W42820228622022 @default.
- W4282022862 crossrefType "journal-article" @default.
- W4282022862 hasAuthorship W4282022862A5006776266 @default.
- W4282022862 hasAuthorship W4282022862A5024120345 @default.
- W4282022862 hasAuthorship W4282022862A5032904655 @default.
- W4282022862 hasAuthorship W4282022862A5071911721 @default.
- W4282022862 hasAuthorship W4282022862A5072326245 @default.
- W4282022862 hasAuthorship W4282022862A5072620654 @default.
- W4282022862 hasAuthorship W4282022862A5078196996 @default.
- W4282022862 hasBestOaLocation W42820228621 @default.
- W4282022862 hasConcept C110121322 @default.
- W4282022862 hasConcept C134306372 @default.
- W4282022862 hasConcept C137580998 @default.
- W4282022862 hasConcept C1549246 @default.
- W4282022862 hasConcept C154945302 @default.
- W4282022862 hasConcept C168741863 @default.
- W4282022862 hasConcept C185592680 @default.
- W4282022862 hasConcept C198531522 @default.
- W4282022862 hasConcept C205372480 @default.
- W4282022862 hasConcept C205649164 @default.
- W4282022862 hasConcept C25989453 @default.
- W4282022862 hasConcept C2777016058 @default.
- W4282022862 hasConcept C3018661444 @default.
- W4282022862 hasConcept C33923547 @default.
- W4282022862 hasConcept C39432304 @default.
- W4282022862 hasConcept C41008148 @default.
- W4282022862 hasConcept C43617362 @default.
- W4282022862 hasConcept C62649853 @default.
- W4282022862 hasConcept C6557445 @default.
- W4282022862 hasConcept C86803240 @default.
- W4282022862 hasConcept C97137747 @default.
- W4282022862 hasConceptScore W4282022862C110121322 @default.
- W4282022862 hasConceptScore W4282022862C134306372 @default.
- W4282022862 hasConceptScore W4282022862C137580998 @default.
- W4282022862 hasConceptScore W4282022862C1549246 @default.
- W4282022862 hasConceptScore W4282022862C154945302 @default.
- W4282022862 hasConceptScore W4282022862C168741863 @default.
- W4282022862 hasConceptScore W4282022862C185592680 @default.
- W4282022862 hasConceptScore W4282022862C198531522 @default.