Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282024997> ?p ?o ?g. }
- W4282024997 endingPage "107067" @default.
- W4282024997 startingPage "107067" @default.
- W4282024997 abstract "In this article, machine learning is used to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading, both of which represent the most complex loadings that couple creep, fatigue and oxidation damage. A uniaxial fatigue and fatigue–creep dataset, which was obtained for temperatures of between 300°C and 600°C for a low-alloy martensitic steel, is utilized in this study. Two different machine learning based approaches to lifetime prediction are demonstrated. The first approach is based only on a shallow neural network, whereas the second approach is proposed as a combination of a sequence learning based model – either long short-term memory network or gated recurrent unit – with the shallow neural network. A good correlation between the experiment and the prediction suggests that lifetime under complex thermo-mechanical loading can be reasonably predicted via the proposed machine learning based damage models." @default.
- W4282024997 created "2022-06-13" @default.
- W4282024997 creator A5078546230 @default.
- W4282024997 date "2022-10-01" @default.
- W4282024997 modified "2023-10-02" @default.
- W4282024997 title "Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading" @default.
- W4282024997 cites W1971041539 @default.
- W4282024997 cites W1972258595 @default.
- W4282024997 cites W1972644350 @default.
- W4282024997 cites W2012928072 @default.
- W4282024997 cites W2014454593 @default.
- W4282024997 cites W2022938880 @default.
- W4282024997 cites W2025070156 @default.
- W4282024997 cites W2036049833 @default.
- W4282024997 cites W2053263256 @default.
- W4282024997 cites W2058122055 @default.
- W4282024997 cites W2064675550 @default.
- W4282024997 cites W2081096961 @default.
- W4282024997 cites W2092446079 @default.
- W4282024997 cites W2148283179 @default.
- W4282024997 cites W2300947221 @default.
- W4282024997 cites W2342870455 @default.
- W4282024997 cites W2571260530 @default.
- W4282024997 cites W2790109047 @default.
- W4282024997 cites W2793935873 @default.
- W4282024997 cites W2801015043 @default.
- W4282024997 cites W2808955892 @default.
- W4282024997 cites W2855289976 @default.
- W4282024997 cites W2899480626 @default.
- W4282024997 cites W2900817099 @default.
- W4282024997 cites W2944419133 @default.
- W4282024997 cites W2953860378 @default.
- W4282024997 cites W2970252474 @default.
- W4282024997 cites W3004978853 @default.
- W4282024997 cites W3008160191 @default.
- W4282024997 cites W3008182203 @default.
- W4282024997 cites W3012784468 @default.
- W4282024997 cites W3016300309 @default.
- W4282024997 cites W3024266484 @default.
- W4282024997 cites W3084200341 @default.
- W4282024997 cites W3085104379 @default.
- W4282024997 cites W3109864797 @default.
- W4282024997 cites W3111289535 @default.
- W4282024997 cites W3113693218 @default.
- W4282024997 cites W3114274355 @default.
- W4282024997 cites W3136443578 @default.
- W4282024997 cites W3170076239 @default.
- W4282024997 cites W3174710087 @default.
- W4282024997 cites W3186075706 @default.
- W4282024997 cites W3205903219 @default.
- W4282024997 cites W3206380954 @default.
- W4282024997 cites W3214614956 @default.
- W4282024997 cites W4207004156 @default.
- W4282024997 cites W4255630393 @default.
- W4282024997 doi "https://doi.org/10.1016/j.ijfatigue.2022.107067" @default.
- W4282024997 hasPublicationYear "2022" @default.
- W4282024997 type Work @default.
- W4282024997 citedByCount "11" @default.
- W4282024997 countsByYear W42820249972023 @default.
- W4282024997 crossrefType "journal-article" @default.
- W4282024997 hasAuthorship W4282024997A5078546230 @default.
- W4282024997 hasConcept C121332964 @default.
- W4282024997 hasConcept C127413603 @default.
- W4282024997 hasConcept C133347239 @default.
- W4282024997 hasConcept C149912024 @default.
- W4282024997 hasConcept C154945302 @default.
- W4282024997 hasConcept C159985019 @default.
- W4282024997 hasConcept C192562407 @default.
- W4282024997 hasConcept C2779686264 @default.
- W4282024997 hasConcept C2985278600 @default.
- W4282024997 hasConcept C41008148 @default.
- W4282024997 hasConcept C49097943 @default.
- W4282024997 hasConcept C50644808 @default.
- W4282024997 hasConcept C66938386 @default.
- W4282024997 hasConcept C97355855 @default.
- W4282024997 hasConceptScore W4282024997C121332964 @default.
- W4282024997 hasConceptScore W4282024997C127413603 @default.
- W4282024997 hasConceptScore W4282024997C133347239 @default.
- W4282024997 hasConceptScore W4282024997C149912024 @default.
- W4282024997 hasConceptScore W4282024997C154945302 @default.
- W4282024997 hasConceptScore W4282024997C159985019 @default.
- W4282024997 hasConceptScore W4282024997C192562407 @default.
- W4282024997 hasConceptScore W4282024997C2779686264 @default.
- W4282024997 hasConceptScore W4282024997C2985278600 @default.
- W4282024997 hasConceptScore W4282024997C41008148 @default.
- W4282024997 hasConceptScore W4282024997C49097943 @default.
- W4282024997 hasConceptScore W4282024997C50644808 @default.
- W4282024997 hasConceptScore W4282024997C66938386 @default.
- W4282024997 hasConceptScore W4282024997C97355855 @default.
- W4282024997 hasFunder F4320309972 @default.
- W4282024997 hasLocation W42820249971 @default.
- W4282024997 hasOpenAccess W4282024997 @default.
- W4282024997 hasPrimaryLocation W42820249971 @default.
- W4282024997 hasRelatedWork W2013075309 @default.
- W4282024997 hasRelatedWork W2048829577 @default.
- W4282024997 hasRelatedWork W2076121501 @default.
- W4282024997 hasRelatedWork W2082987962 @default.
- W4282024997 hasRelatedWork W2907722335 @default.