Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282026400> ?p ?o ?g. }
- W4282026400 endingPage "716" @default.
- W4282026400 startingPage "707" @default.
- W4282026400 abstract "Predicting increased risk of future healthcare utilization in chronic obstructive pulmonary disease (COPD) patients is an important goal for improving patient management.Our objective was to determine the importance of computed tomography (CT) lung imaging measurements relative to other demographic and clinical measurements for predicting future health services use with machine learning in COPD.In this retrospective study, lung function measurements and chest CT images were acquired from Canadian Cohort of Obstructive Lung Disease study participants from 2010 to 2017 (https://clinicaltrials.gov, NCT00920348). Up to two follow-up visits (1.5- and 3-year follow-up) were performed and participants were asked for details related to healthcare utilization. Healthcare utilization was defined as any COPD hospitalization or emergency room visit due to respiratory problems in the 12 months prior to the follow-up visits. CT analysis was performed (VIDA Diagnostics Inc.); a total of 108 CT quantitative emphysema, airway and vascular measurements were investigated. A hybrid feature selection method with support vector machine classifier was used to predict healthcare utilization. Performance was determined using accuracy, F1-measure and area under the receiver operating characteristic curve (AUC) and Matthews's correlation coefficient (MC).Of the 527 COPD participants evaluated, 179 (35%) used healthcare services at follow-up. There were no significant differences between the participants with or without healthcare utilization at follow-up for age (p = 0.50), sex (p = 0.44), BMI (p = 0.05) or pack-years (p = 0.76). The accuracy for predicting subsequent healthcare utilization was 80% ± 3% (F1-measure = 74%, AUC = 0.80, MC = 0.6) when all measurements were considered, 76% ± 6% (F1-measure = 72%, AUC = 0.77, MC = 0.55) for CT measurements alone and 65% ± 5% (F1-measure = 60%, AUC = 0.67, MC = 0.34) for demographic and lung function measurements alone.The combination of CT lung imaging and conventional measurements leads to greater prediction accuracy of subsequent health services use than conventional measurements alone, and may provide needed prognostic information for patients suffering from COPD." @default.
- W4282026400 created "2022-06-13" @default.
- W4282026400 creator A5002017949 @default.
- W4282026400 creator A5051002420 @default.
- W4282026400 creator A5055671287 @default.
- W4282026400 creator A5067086913 @default.
- W4282026400 creator A5072863758 @default.
- W4282026400 creator A5084936588 @default.
- W4282026400 creator A5091776168 @default.
- W4282026400 date "2023-04-01" @default.
- W4282026400 modified "2023-10-18" @default.
- W4282026400 title "Quantitative CT Lung Imaging and Machine Learning Improves Prediction of Emergency Room Visits and Hospitalizations in COPD" @default.
- W4282026400 cites W1829394506 @default.
- W4282026400 cites W1969097370 @default.
- W4282026400 cites W2002726093 @default.
- W4282026400 cites W2003852436 @default.
- W4282026400 cites W2005135109 @default.
- W4282026400 cites W2020707691 @default.
- W4282026400 cites W2037810426 @default.
- W4282026400 cites W2054404145 @default.
- W4282026400 cites W2054931962 @default.
- W4282026400 cites W2069919459 @default.
- W4282026400 cites W2095294492 @default.
- W4282026400 cites W2099696411 @default.
- W4282026400 cites W2115702163 @default.
- W4282026400 cites W2125078269 @default.
- W4282026400 cites W2127946499 @default.
- W4282026400 cites W2139131213 @default.
- W4282026400 cites W2139507936 @default.
- W4282026400 cites W2141922649 @default.
- W4282026400 cites W2146965595 @default.
- W4282026400 cites W2171647346 @default.
- W4282026400 cites W2605922627 @default.
- W4282026400 cites W2724609343 @default.
- W4282026400 cites W2747239266 @default.
- W4282026400 cites W2753087220 @default.
- W4282026400 cites W2767229305 @default.
- W4282026400 cites W2777960091 @default.
- W4282026400 cites W2810708119 @default.
- W4282026400 cites W2900944333 @default.
- W4282026400 cites W2925128562 @default.
- W4282026400 cites W2987356042 @default.
- W4282026400 cites W3137031156 @default.
- W4282026400 cites W4211263216 @default.
- W4282026400 doi "https://doi.org/10.1016/j.acra.2022.05.009" @default.
- W4282026400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35690537" @default.
- W4282026400 hasPublicationYear "2023" @default.
- W4282026400 type Work @default.
- W4282026400 citedByCount "2" @default.
- W4282026400 countsByYear W42820264002023 @default.
- W4282026400 crossrefType "journal-article" @default.
- W4282026400 hasAuthorship W4282026400A5002017949 @default.
- W4282026400 hasAuthorship W4282026400A5051002420 @default.
- W4282026400 hasAuthorship W4282026400A5055671287 @default.
- W4282026400 hasAuthorship W4282026400A5067086913 @default.
- W4282026400 hasAuthorship W4282026400A5072863758 @default.
- W4282026400 hasAuthorship W4282026400A5084936588 @default.
- W4282026400 hasAuthorship W4282026400A5091776168 @default.
- W4282026400 hasConcept C118552586 @default.
- W4282026400 hasConcept C126322002 @default.
- W4282026400 hasConcept C126838900 @default.
- W4282026400 hasConcept C160735492 @default.
- W4282026400 hasConcept C162324750 @default.
- W4282026400 hasConcept C1862650 @default.
- W4282026400 hasConcept C194828623 @default.
- W4282026400 hasConcept C2776780178 @default.
- W4282026400 hasConcept C2780724011 @default.
- W4282026400 hasConcept C50522688 @default.
- W4282026400 hasConcept C544519230 @default.
- W4282026400 hasConcept C58471807 @default.
- W4282026400 hasConcept C71924100 @default.
- W4282026400 hasConcept C72563966 @default.
- W4282026400 hasConceptScore W4282026400C118552586 @default.
- W4282026400 hasConceptScore W4282026400C126322002 @default.
- W4282026400 hasConceptScore W4282026400C126838900 @default.
- W4282026400 hasConceptScore W4282026400C160735492 @default.
- W4282026400 hasConceptScore W4282026400C162324750 @default.
- W4282026400 hasConceptScore W4282026400C1862650 @default.
- W4282026400 hasConceptScore W4282026400C194828623 @default.
- W4282026400 hasConceptScore W4282026400C2776780178 @default.
- W4282026400 hasConceptScore W4282026400C2780724011 @default.
- W4282026400 hasConceptScore W4282026400C50522688 @default.
- W4282026400 hasConceptScore W4282026400C544519230 @default.
- W4282026400 hasConceptScore W4282026400C58471807 @default.
- W4282026400 hasConceptScore W4282026400C71924100 @default.
- W4282026400 hasConceptScore W4282026400C72563966 @default.
- W4282026400 hasFunder F4320320994 @default.
- W4282026400 hasFunder F4320334593 @default.
- W4282026400 hasIssue "4" @default.
- W4282026400 hasLocation W42820264001 @default.
- W4282026400 hasLocation W42820264002 @default.
- W4282026400 hasOpenAccess W4282026400 @default.
- W4282026400 hasPrimaryLocation W42820264001 @default.
- W4282026400 hasRelatedWork W2026095104 @default.
- W4282026400 hasRelatedWork W2067626299 @default.
- W4282026400 hasRelatedWork W2168449172 @default.
- W4282026400 hasRelatedWork W2362299873 @default.
- W4282026400 hasRelatedWork W2372071230 @default.