Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282030705> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4282030705 abstract "Abstract This article aimed at measuring the extent to which chemical inputs used in the water treatment process complied with acceptable limits set by competent authorities. The computed drinking water quality index (DWQI) was visualized in a dashboard created in Microsoft Power Business Intelligence. The adopted operational approach helped compare daily compliance versus non-compliance. Then, a logistic regression predictive model was used to determine whether there were any significant separations between water treatment plants (WTPs) as per quality compliance results. The analysis was done on 13,158 daily water transactions recorded by 18 WTPs managed by the Water and Sanitation Corporation (WASAC) of Rwanda. As per DWQI values, all the WTP’s water productions generally complied with the quality requirements despite few exceptions. The predictive model accuracy was confirmed at 93.4% with all variables being statistically influential. In terms of predicted probabilities, WTPs fell in two clusters: WTPs located in the Northern, Kigali and Western provinces and those in the Eastern and Southern provinces. The first cluster had the probability of more than 95% to produce excellent water while the other had the probability of less than 95%. On average, the water treated in the provinces of the first cluster has more than 95% chance to be excellent. On the other hand, WTPs in Eastern and Southern Provinces have more than 90% but less than 95% chance to produce A-ranked water. Finally, the performance monitoring of water products was recommended to complement the current operational approach to confirm its suitability for human consumption." @default.
- W4282030705 created "2022-06-13" @default.
- W4282030705 creator A5000164123 @default.
- W4282030705 creator A5062486789 @default.
- W4282030705 creator A5069590909 @default.
- W4282030705 date "2022-06-06" @default.
- W4282030705 modified "2023-10-15" @default.
- W4282030705 title "Monitoring the Quality Compliance of Drinking Water Treatment Process using Machine Learning Techniques" @default.
- W4282030705 doi "https://doi.org/10.21203/rs.3.rs-1709108/v1" @default.
- W4282030705 hasPublicationYear "2022" @default.
- W4282030705 type Work @default.
- W4282030705 citedByCount "0" @default.
- W4282030705 crossrefType "posted-content" @default.
- W4282030705 hasAuthorship W4282030705A5000164123 @default.
- W4282030705 hasAuthorship W4282030705A5062486789 @default.
- W4282030705 hasAuthorship W4282030705A5069590909 @default.
- W4282030705 hasBestOaLocation W42820307051 @default.
- W4282030705 hasConcept C105795698 @default.
- W4282030705 hasConcept C111472728 @default.
- W4282030705 hasConcept C119043178 @default.
- W4282030705 hasConcept C138885662 @default.
- W4282030705 hasConcept C151956035 @default.
- W4282030705 hasConcept C18903297 @default.
- W4282030705 hasConcept C190960625 @default.
- W4282030705 hasConcept C2778136018 @default.
- W4282030705 hasConcept C2780151969 @default.
- W4282030705 hasConcept C2780797713 @default.
- W4282030705 hasConcept C33923547 @default.
- W4282030705 hasConcept C39432304 @default.
- W4282030705 hasConcept C41008148 @default.
- W4282030705 hasConcept C86803240 @default.
- W4282030705 hasConcept C87717796 @default.
- W4282030705 hasConcept C97053079 @default.
- W4282030705 hasConceptScore W4282030705C105795698 @default.
- W4282030705 hasConceptScore W4282030705C111472728 @default.
- W4282030705 hasConceptScore W4282030705C119043178 @default.
- W4282030705 hasConceptScore W4282030705C138885662 @default.
- W4282030705 hasConceptScore W4282030705C151956035 @default.
- W4282030705 hasConceptScore W4282030705C18903297 @default.
- W4282030705 hasConceptScore W4282030705C190960625 @default.
- W4282030705 hasConceptScore W4282030705C2778136018 @default.
- W4282030705 hasConceptScore W4282030705C2780151969 @default.
- W4282030705 hasConceptScore W4282030705C2780797713 @default.
- W4282030705 hasConceptScore W4282030705C33923547 @default.
- W4282030705 hasConceptScore W4282030705C39432304 @default.
- W4282030705 hasConceptScore W4282030705C41008148 @default.
- W4282030705 hasConceptScore W4282030705C86803240 @default.
- W4282030705 hasConceptScore W4282030705C87717796 @default.
- W4282030705 hasConceptScore W4282030705C97053079 @default.
- W4282030705 hasLocation W42820307051 @default.
- W4282030705 hasOpenAccess W4282030705 @default.
- W4282030705 hasPrimaryLocation W42820307051 @default.
- W4282030705 hasRelatedWork W2005396658 @default.
- W4282030705 hasRelatedWork W2213741131 @default.
- W4282030705 hasRelatedWork W2381383750 @default.
- W4282030705 hasRelatedWork W289081114 @default.
- W4282030705 hasRelatedWork W2909706786 @default.
- W4282030705 hasRelatedWork W3094090087 @default.
- W4282030705 hasRelatedWork W3161611511 @default.
- W4282030705 hasRelatedWork W4233153962 @default.
- W4282030705 hasRelatedWork W4298001874 @default.
- W4282030705 hasRelatedWork W2182249798 @default.
- W4282030705 isParatext "false" @default.
- W4282030705 isRetracted "false" @default.
- W4282030705 workType "article" @default.