Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282049157> ?p ?o ?g. }
- W4282049157 endingPage "9992" @default.
- W4282049157 startingPage "9980" @default.
- W4282049157 abstract "With the gradual popularization of self-driving, it is becoming increasingly important for vehicles to smartly make the right driving decisions and autonomously obey traffic rules by correctly recognizing traffic signs. However, for machine learning-based traffic sign recognition on the Internet of Vehicles (IoV), a large amount of traffic sign data from distributed vehicles is needed to be gathered in a centralized server for model training, which brings serious privacy leakage risk because of traffic sign data containing lots of location privacy information. To address this issue, we first exploit privacy-preserving federated learning to perform collaborative training for accurate recognition models without sharing raw traffic sign data. Nevertheless, due to the limited computing and energy resources of most devices, it is hard for vehicles to continuously undertake complex artificial intelligence tasks. Therefore, we introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training, which is the next generation of neural networks and is practical and well-fitted to IoV scenarios. Furthermore, we design a novel encoding scheme for SNNs based on neuron receptive fields to extract information from the pixel and spatial dimensions of traffic signs to achieve high-accuracy training. Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well." @default.
- W4282049157 created "2022-06-13" @default.
- W4282049157 creator A5021066503 @default.
- W4282049157 creator A5034995105 @default.
- W4282049157 creator A5043262479 @default.
- W4282049157 creator A5062761975 @default.
- W4282049157 creator A5077558876 @default.
- W4282049157 creator A5086533292 @default.
- W4282049157 creator A5091266202 @default.
- W4282049157 date "2022-09-01" @default.
- W4282049157 modified "2023-10-16" @default.
- W4282049157 title "Efficient Federated Learning With Spike Neural Networks for Traffic Sign Recognition" @default.
- W4282049157 cites W1570411240 @default.
- W4282049157 cites W2037030438 @default.
- W4282049157 cites W2102050507 @default.
- W4282049157 cites W2122374500 @default.
- W4282049157 cites W2150581781 @default.
- W4282049157 cites W2242231635 @default.
- W4282049157 cites W2559744077 @default.
- W4282049157 cites W2569813014 @default.
- W4282049157 cites W2590382526 @default.
- W4282049157 cites W2723293840 @default.
- W4282049157 cites W2779025322 @default.
- W4282049157 cites W2791496413 @default.
- W4282049157 cites W2792806930 @default.
- W4282049157 cites W2892077605 @default.
- W4282049157 cites W2898323475 @default.
- W4282049157 cites W2914276702 @default.
- W4282049157 cites W2960575309 @default.
- W4282049157 cites W2962951509 @default.
- W4282049157 cites W2964052347 @default.
- W4282049157 cites W2964338223 @default.
- W4282049157 cites W2972882814 @default.
- W4282049157 cites W2974175488 @default.
- W4282049157 cites W2990793844 @default.
- W4282049157 cites W2993620483 @default.
- W4282049157 cites W2993809815 @default.
- W4282049157 cites W3006403513 @default.
- W4282049157 cites W3006655855 @default.
- W4282049157 cites W3010852232 @default.
- W4282049157 cites W3012481664 @default.
- W4282049157 cites W3015205410 @default.
- W4282049157 cites W3015764616 @default.
- W4282049157 cites W3097285691 @default.
- W4282049157 cites W3124237980 @default.
- W4282049157 cites W3133575899 @default.
- W4282049157 cites W3136170095 @default.
- W4282049157 cites W3136338303 @default.
- W4282049157 cites W3158377181 @default.
- W4282049157 cites W3189867955 @default.
- W4282049157 cites W3196677700 @default.
- W4282049157 cites W3199110993 @default.
- W4282049157 cites W3205260830 @default.
- W4282049157 cites W3206730932 @default.
- W4282049157 cites W3213984553 @default.
- W4282049157 cites W3214521657 @default.
- W4282049157 cites W4206049888 @default.
- W4282049157 doi "https://doi.org/10.1109/tvt.2022.3178808" @default.
- W4282049157 hasPublicationYear "2022" @default.
- W4282049157 type Work @default.
- W4282049157 citedByCount "14" @default.
- W4282049157 countsByYear W42820491572022 @default.
- W4282049157 countsByYear W42820491572023 @default.
- W4282049157 crossrefType "journal-article" @default.
- W4282049157 hasAuthorship W4282049157A5021066503 @default.
- W4282049157 hasAuthorship W4282049157A5034995105 @default.
- W4282049157 hasAuthorship W4282049157A5043262479 @default.
- W4282049157 hasAuthorship W4282049157A5062761975 @default.
- W4282049157 hasAuthorship W4282049157A5077558876 @default.
- W4282049157 hasAuthorship W4282049157A5086533292 @default.
- W4282049157 hasAuthorship W4282049157A5091266202 @default.
- W4282049157 hasBestOaLocation W42820491572 @default.
- W4282049157 hasConcept C119857082 @default.
- W4282049157 hasConcept C134306372 @default.
- W4282049157 hasConcept C139676723 @default.
- W4282049157 hasConcept C154945302 @default.
- W4282049157 hasConcept C165696696 @default.
- W4282049157 hasConcept C2983860417 @default.
- W4282049157 hasConcept C33923547 @default.
- W4282049157 hasConcept C38652104 @default.
- W4282049157 hasConcept C41008148 @default.
- W4282049157 hasConcept C50644808 @default.
- W4282049157 hasConcept C6528762 @default.
- W4282049157 hasConcept C81363708 @default.
- W4282049157 hasConceptScore W4282049157C119857082 @default.
- W4282049157 hasConceptScore W4282049157C134306372 @default.
- W4282049157 hasConceptScore W4282049157C139676723 @default.
- W4282049157 hasConceptScore W4282049157C154945302 @default.
- W4282049157 hasConceptScore W4282049157C165696696 @default.
- W4282049157 hasConceptScore W4282049157C2983860417 @default.
- W4282049157 hasConceptScore W4282049157C33923547 @default.
- W4282049157 hasConceptScore W4282049157C38652104 @default.
- W4282049157 hasConceptScore W4282049157C41008148 @default.
- W4282049157 hasConceptScore W4282049157C50644808 @default.
- W4282049157 hasConceptScore W4282049157C6528762 @default.
- W4282049157 hasConceptScore W4282049157C81363708 @default.
- W4282049157 hasFunder F4320320671 @default.
- W4282049157 hasFunder F4320320709 @default.